已知:將函數(shù)y=33x的圖象向上平移2個單位,得到一個新的函數(shù)圖象.
(1)寫出這個新的函數(shù)的解析式;
(2)若平移前后的這兩個函數(shù)圖象分別與y軸交于O,A兩點(diǎn),與直線x=-3交于C,B兩點(diǎn).試判斷以A,B,C,O四點(diǎn)為頂點(diǎn)四邊形狀,并說明理由;
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)y=x2-2bx+b2+12的圖象一部分,求滿足條件的實(shí)數(shù)b的取值范圍.
y
=
3
3
x
x
=
-
3
y
=
x
2
-
2
bx
+
b
2
+
1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:51引用:5難度:0.1
相似題
-
1.已知△ABC是邊長為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸交于點(diǎn)E,已知點(diǎn)B(-1,0).
(1)點(diǎn)A的坐標(biāo):,點(diǎn)E的坐標(biāo):;
(2)若二次函數(shù)y=-x2+bx+c過點(diǎn)A、E,求此二次函數(shù)的解析式;637
(3)P是AC上的一個動點(diǎn)(P與點(diǎn)A、C不重合)連接PB、PD,設(shè)l是△PBD的周長,當(dāng)l取最小值時,求點(diǎn)P的坐標(biāo)及l(fā)的最小值并判斷此時點(diǎn)P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.發(fā)布:2025/5/24 7:0:1組卷:236引用:3難度:0.3 -
2.如圖,拋物線y=ax2+bx+3(a≠0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)是(3,0),拋物線的對稱軸是直線x=1.
(1)求拋物線的函數(shù)表達(dá)式;
(2)連接BC,AC,若點(diǎn)P為第四象限內(nèi)拋物線上一點(diǎn),且∠PCA=∠BCO,求點(diǎn)P的坐標(biāo);
(3)過點(diǎn)C作x軸的平行線交拋物線于點(diǎn)D過D點(diǎn)作DE⊥x軸于點(diǎn)E得到矩形OCDE,將△OBC沿x軸向右平移,當(dāng)B點(diǎn)與E重合時結(jié)束,設(shè)平移距離為t,△OBC與矩形OCDE重疊面積為S,請直接寫出S與t的函數(shù)關(guān)系.發(fā)布:2025/5/24 7:0:1組卷:237引用:1難度:0.4 -
3.如圖,已知拋物線y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D(2,-1),直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)M是直線l上的動點(diǎn),當(dāng)以點(diǎn)M、B、D為頂點(diǎn)的三角形與△ABC相似時,求點(diǎn)M的坐標(biāo).發(fā)布:2025/5/24 7:0:1組卷:470引用:3難度:0.3