在平面直角坐標(biāo)系xOy中,點(diǎn)M到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1,記點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)斜率為k的直線l過定點(diǎn)P(-2,1),求直線l與軌跡C恰好有一個(gè)公共點(diǎn)、兩個(gè)公共點(diǎn)、三個(gè)公共點(diǎn)時(shí)k的相應(yīng)取值范圍.
【考點(diǎn)】直線與拋物線的綜合.
【答案】(I)
;
(II)當(dāng)k∈∪{0}時(shí),直線l與C恰有一個(gè)公共點(diǎn);
當(dāng)k∪{-1,}時(shí),直線l與C恰有兩個(gè)公共點(diǎn);
當(dāng)k∈時(shí),直線l與軌跡C恰有三個(gè)公共點(diǎn).
y
2
=
4 x , x ≥ 0 |
0 , x < 0 |
(II)當(dāng)k∈
(
-
∞
,-
1
)
∪
(
1
2
,
+
∞
)
當(dāng)k
∈
[
-
1
2
,
0
)
1
2
當(dāng)k∈
(
-
1
,-
1
2
)
∪
(
0
,
1
2
)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:1751引用:9難度:0.3
相似題
-
1.拋物線x2=4y的焦點(diǎn)為F,準(zhǔn)線為l,A,B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足AF⊥BF,P為線段AB的中點(diǎn),設(shè)P在l上的射影為Q,則
的最大值是( ?。?/h2>|PQ||AB|發(fā)布:2024/12/29 5:30:3組卷:455引用:7難度:0.5 -
2.如圖,設(shè)拋物線y2=2px的焦點(diǎn)為F,過x軸上一定點(diǎn)D(2,0)作斜率為2的直線l與拋物線相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,記△BCF的面積為S1,△ACF的面積為S2,若
,則拋物線的標(biāo)準(zhǔn)方程為( )S1S2=14發(fā)布:2024/12/17 0:0:2組卷:163引用:6難度:0.6 -
3.如圖,已知點(diǎn)P是拋物線C:y2=4x上位于第一象限的點(diǎn),點(diǎn)A(-2,0),點(diǎn)M,N是y軸上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)M位于x軸上方),滿足PM⊥PN,AM⊥AN,線段PN分別交x軸正半軸、拋物線C于點(diǎn)D,Q,射線MP交x軸正半軸于點(diǎn)E.
(Ⅰ)若四邊形ANPM為矩形,求點(diǎn)P的坐標(biāo);
(Ⅱ)記△DOP,△DEQ的面積分別為S1,S2,求S1?S2的最大值.發(fā)布:2024/12/29 1:0:8組卷:92引用:2難度:0.4
相關(guān)試卷