【數(shù)學(xué)概念】
我們把存在內(nèi)切圓與外接圓的四邊形稱為雙圓四邊形.例如,如圖①,四邊形ABCD內(nèi)接于⊙M,且每條邊均與⊙P相切,切點分別為E,F(xiàn),G,H,因此該四邊形是雙圓四邊形.

【性質(zhì)初探】
(1)雙圓四邊形的對角的數(shù)量關(guān)系是 互補互補,依據(jù)是 圓的內(nèi)接四邊形的對角互補圓的內(nèi)接四邊形的對角互補.
(2)直接寫出雙圓四邊形的邊的性質(zhì).(用文字表述)
(3)在圖①中,連接GE,HF,求證GE⊥HF.
【揭示關(guān)系】
(4)根據(jù)雙圓四邊形與四邊形、平行四邊形、矩形、菱形、正方形的關(guān)系,在圖②中畫出雙圓四邊形的大致區(qū)域,并用陰影表示.
【特例研究】
(5)已知P,M分別是雙圓四邊形ABCD的內(nèi)切圓和外接圓的圓心,若AB=1,∠BCD=60°,∠B=90°,則PM的長為 2-32-3.
3
3
【考點】圓的綜合題.
【答案】互補;圓的內(nèi)接四邊形的對角互補;2-
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/14 7:0:1組卷:328引用:1難度:0.3
相似題
-
1.問題探究
(1)在△ABC中,BD,CE分別是∠ABC與∠BCA的平分線.
①若∠A=60°,AB=AC,如圖1,試證明BC=CD+BE;
②將①中的條件“AB=AC”去掉,其他條件不變,如圖2,問①中的結(jié)論是否成立?并說明理由.
遷移運用
(2)若四邊形ABCD是圓的內(nèi)接四邊形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如圖3,試探究線段AD,BC,AC之間的等量關(guān)系,并證明.發(fā)布:2025/6/14 18:30:4組卷:1848引用:5難度:0.2 -
2.【數(shù)學(xué)概念】
有一條對角線平分一組對角的四邊形叫“對分四邊形”.
【概念理解】
(1)關(guān)于“對分四邊形”,下列說法正確的是 .(填所有正確的序號)
①菱形是“對分四邊形”
②“對分四邊形”至少有兩組鄰邊相等
③“對分四邊形”的對角線互相平分
【問題解決】
(2)如圖①,PA為⊙O的切線,A為切點.在⊙O上是否存在點B、C,使以P、A、B、C為頂點的四邊形是“對分四邊形”?小明的作法:
①以P為圓心,PA長為半徑作弧,與⊙O交于點B;
②連接PO并延長,交⊙O于點C;
③點B、C即為所求.
(3)如圖②,已知線段AB和直線l,請在圖②中利用無刻度的直尺和圓規(guī),在直線l上作出點M、N,使以A、B、M、N為頂點的四邊形是“對分四邊形”.(只要作出一個即可,不寫作法,保留作圖痕跡)
(4)如圖③,⊙O的半徑為5,AB是⊙O的弦,AB=8,點C是⊙O上的動點,若存在四邊形ABCD是“對分四邊形”,且有一條邊所在的直線是⊙O的切線,直接寫出AC的長度.發(fā)布:2025/6/14 20:30:2組卷:977引用:3難度:0.1 -
3.如圖,⊙M經(jīng)過O點,并且分別與 x軸、y軸的正半軸交于A、B兩點,線段OA,OB(OA>OB)的長是方程 x2-17x+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點C在⊙M的劣弧上,MC⊥OA,垂足為點N,求點C的坐標(biāo);?OA
(3)在(2)的條件下,連結(jié)BC交OA于D點,在⊙M上是否存在一點P,使△POD的面積和△ABD的面積相等?若存在,求出點P的坐標(biāo),若不存在,說明理由;
(4)若C在優(yōu)弧OA上,作直線BC交x軸于點D.是否存在△COB∽△CDO?若存在,請直接寫出點C的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/14 17:0:2組卷:43引用:1難度:0.2