a2-2ab+b2教科書(shū)中這樣寫(xiě)道:“我們把多項(xiàng)式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問(wèn)題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問(wèn)題或求代數(shù)式最大值,最小值等.
例如:分解因式:x2+2x-3.
原式=x2+2x-3=(x2+2x+1)-4=(x+1+2)(x+1-2)=(x+3)(x-1).
例如:求代數(shù)式2x2+4x-6的最小值.
原式=2x2+4x-6=2(x+1)2-8.
∴當(dāng)x=-1時(shí),2x2+4x-6有最小值,最小值是-8.
(1)請(qǐng)用上述方法分解因式:a2-2a-3=(a+1)(a-3)(a+1)(a-3);
(2)試說(shuō)明:x、y取任何實(shí)數(shù)時(shí),多項(xiàng)式x2+y2-4x+2y+6的值總為正數(shù);
(3)當(dāng)m、n為何值時(shí),多項(xiàng)式m2-2mn+2n2-4m-4n+25有最小值,并求出這個(gè)最小值.
【考點(diǎn)】因式分解的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】(a+1)(a-3)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/1 15:0:9組卷:99引用:2難度:0.5
相似題
-
1.若一個(gè)四位數(shù)M的個(gè)位數(shù)字與十位數(shù)字的和與它們的差之積恰好是M去掉個(gè)位數(shù)字與十位數(shù)字后得到的兩位數(shù),則這個(gè)四位數(shù)M為“和差數(shù)”.
例如:M=1514,∵(4+1)(4-1)=15,∴1514是“和差數(shù)”.
又如:M=2526,∵(6+2)(6-2)=32≠25,∴2526不是“和差數(shù)”.
(1)判斷2022,2046是否是“和差數(shù)”,并說(shuō)明理由;
(2)一個(gè)“和差數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個(gè)位數(shù)字為d,記,且G(M)=dc.當(dāng)G(M),P(M)均是整數(shù)時(shí),求出所有滿(mǎn)足條件的M.P(M)=Mc+d發(fā)布:2025/5/24 7:30:1組卷:222引用:1難度:0.4 -
2.已知a-b=-l,則3a2-6ab+3b2=.
發(fā)布:2025/5/24 17:0:2組卷:6引用:1難度:0.6 -
3.材料:一個(gè)兩位數(shù)記為x,另外一個(gè)兩位數(shù)記為y,規(guī)定F(x,y)=
,當(dāng)F(x,y)為整數(shù)時(shí),稱(chēng)這兩個(gè)兩位數(shù)互為“均衡數(shù)”.x+y7
例如:x=42,y=21,則F(42,21)==9,所以42,21互為“均衡數(shù)”,又如x=54,y=43,F(xiàn)(54,43)=42+217不是整數(shù),所以54,43不是互為“均衡數(shù)”.54+437
(1)請(qǐng)判斷40,41和52,17是不是互為“均衡數(shù)”,并說(shuō)明理由.
(2)已知x,y是互為“均衡數(shù)”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c為整數(shù)),規(guī)定G(x,y)=2x-y.若G(x,y)除以7余數(shù)為2,求出F(x,y)值.發(fā)布:2025/5/24 8:30:1組卷:205引用:2難度:0.4