問題提出:
如圖,圖①是一張由三個邊長為1的小正方形組成的“L”形紙片,圖②是一張a×b的方格紙(a×b的方格紙指邊長分別為a,b的矩形,被分成a×b個邊長為1的小正方形,其中a≥2,b≥2,且a,b為正整數(shù)).把圖①放置在圖②中,使它恰好蓋住圖②中的三個小正方形,共有多少種不同的放置方法?
問題探究:
為探究規(guī)律,我們采用一般問題特殊化的策略,先從最簡單的情形入手,再逐次遞進,最后得出一般性的結(jié)論.
探究一:
把圖①放置在2×2的方格紙中,使它恰好蓋住其中的三個小正方形,共有多少種不同的放置方法?
如圖③,對于2×2的方格紙,要用圖①蓋住其中的三個小正方形,顯然有4種不同的放置方法.
探究二:
把圖①放置在3×2的方格紙中,使它恰好蓋住其中的三個小正方形,共有多少種不同的放置方法?
如圖④,在3×2的方格紙中,共可以找到2個位置不同的2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在3×2的方格紙中,使它恰好蓋住其中的三個小正方形,共有2×4=8種不同的放置方法.

(1)探究三:
把圖①放置在a×2的方格紙中,使它恰好蓋住其中的三個小正方形,共有多少種不同的放置方法?
如圖⑤,在a×2的方格紙中,共可以找到個位置不同的2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在a×2的方格紙中,使它恰好蓋住其中的三個小正方形,共有 (a-1)(a-1)種不同的放置方法.
(2)探究四:
把圖①放置在a×3的方格紙中,使它恰好蓋住其中的三個小正方形,共有多少種不同的放置方法?
如圖⑥,在a×3的方格紙中,共可以找到個位置不同的2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在a×3的方格紙中,使它恰好蓋住其中的三個小正方形,共有 (4a-4)(4a-4)種不同的放置方法.
(3)問題解決:
把圖①放置在a×b的方格紙中,使它恰好蓋住其中的三個小正方形,共有多少種不同的放置方法?(仿照前面的探究方法,寫出解答過程,不需畫圖)
(4)問題拓展:
如圖,圖⑦是一個由4個棱長為1的小立方體構(gòu)成的幾何體,圖⑧是一個長、寬、高分別為a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整數(shù))的長方體,被分成了a×b×c個棱長為1的小立方體.在圖⑧的不同位置共可以找到個圖⑦這樣的幾何體.
【答案】(a-1);(4a-4)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/24 6:0:10組卷:33引用:1難度:0.5
相似題
-
1.某校利用二維碼進行學(xué)生學(xué)號統(tǒng)一編排.黑色小正方形表示1,白色小正方形表示0,將每一行數(shù)字從左到右依次記為a,b,c,d,那么利用公式a×23+b×22+c×21+d計算出每一行的數(shù)據(jù).第一行表示年級,第二行表示班級,第三行表示班級學(xué)號的十位數(shù),第四行表示班級學(xué)號的個位數(shù).如圖1所示,第一行數(shù)字從左往右依次是1,0,0,1,則表示的數(shù)據(jù)為1×23+0×22+0×21+1=9,記作09,第二行數(shù)字從左往右依次是1,0,1,0,則表示的數(shù)據(jù)為1×23+0×22+1×21=10,記作10,以此類推,圖1代表的統(tǒng)一學(xué)號為091034,表示9年級10班34號.小明所對應(yīng)的二維碼如圖2所示,則他的統(tǒng)一學(xué)號為( )
A.060729 B.070629 C.070627 D.060727 發(fā)布:2025/6/9 1:0:1組卷:424引用:9難度:0.5 -
2.如圖1,在下面由火柴棒拼出的一系列的圖形中,第n個圖形由n個正方形組成.
(1)第2個圖形中,火柴棒的根數(shù)是 ;
(2)第n個圖形中,火柴棒的根數(shù)是 ,第 個圖形火柴棒的根數(shù)為2023;
(3)若用上述方式拼a個正方形所需火柴棒恰好可以拼出圖2所示的b個正六邊形,求的值.ba發(fā)布:2025/6/9 2:0:7組卷:43引用:1難度:0.6 -
3.一根繩子彎曲成如圖所示的形狀,當把繩子如圖①那樣沿虛線a剪1次時,繩子被剪為5段;當把繩子如圖②那樣沿虛線a,b剪2次時,繩子被剪為9段,若按照上述規(guī)律把繩子剪n次,則繩子被剪為( ?。?/h2>
A.(6n-1)段 B.(5n-1)段 C.(4n+1)段 D. 段11n-n22發(fā)布:2025/6/9 2:30:1組卷:372引用:10難度:0.7