[問題發(fā)現]如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D為斜邊BC上一點(不與點B,C重合),將線段AD繞點A順時針旋轉90°得到AE,連接EC,則線段BD與CE的數量關系是 BD=CEBD=CE,位置關系是 BD⊥CEBD⊥CE;
[探究證明]如圖2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC.AD=AE,將△ADE繞點A旋轉,當點C,D,E在同一條直線上時,BD與CE具有怎樣的位置關系,說明理由;
[拓展延伸]如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,過點C作CA⊥BD于A.將△ACD繞點A順時針旋轉,點C的對應點為點E.設旋轉角∠CAE為a(0°<a<360°),當C,D,E在同一條直線上時,畫出圖形,并求出線段BE的長度.

【考點】幾何變換綜合題.
【答案】BD=CE;BD⊥CE
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:405引用:1難度:0.3
相似題
-
1.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數;
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉60°得△CMH,E點對應點為M,G點的對應點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
2.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是33.3
其中正確結論的序號是.發(fā)布:2025/5/23 1:30:2組卷:3126難度:0.5 -
3.在△ABC中,AB=AC,∠BAC=α,點P為線段CA延長線上一動點,連接PB,將線段PB繞點P逆時針旋轉,旋轉角為α,得到線段PD,連接DB,DC.
(1)如圖1,當α=60°時,
①求證:PA=DC;
②求∠DCP的度數;
(2)如圖2,當α=120°時,請直接寫出PA和DC的數量關系.
(3)當α=120°時,若AB=6,BP=,請直接寫出點D到CP的距離為.31發(fā)布:2025/5/23 4:0:1組卷:4734引用:13難度:0.1