如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的拋物線(xiàn)為y=-x2+bx+c.點(diǎn)D為線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線(xiàn)于點(diǎn)E.
(1)求拋物線(xiàn)的解析式.
(2)當(dāng)DE=4時(shí),求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說(shuō)明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2185引用:66難度:0.5
相似題
-
1.【學(xué)習(xí)新知】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱(chēng)這樣的方程為“倍根方程”.
研究發(fā)現(xiàn)了此類(lèi)方程的一般性結(jié)論:設(shè)其中一根為t,則另一個(gè)根為2t,因此ax2+bx+c=a(x-t)(x-2t)=ax2-3atx+2t2a,所以有b2-ac=0.92
我們記“K=b2-ac”,即K=0時(shí),方程ax2+bx+c=0為倍根方程.92
【問(wèn)題解決】
(1)方程①x2-x-2=0;②x2-6x+8=0;③6x2+x=0;④x2+2x+13=0,這幾個(gè)方程中,是倍根方程的是 (填序號(hào)即可);83
(2)若(x-2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;
(3)關(guān)于x的一元二次方程x2-x+mn=0(m≥0)是倍根方程,且點(diǎn)A(m,n)在一次函數(shù)y=3x-8的圖象上,求此倍根方程的表達(dá)式并求出方程的解.23發(fā)布:2025/6/7 2:30:1組卷:324引用:2難度:0.1 -
2.如圖,已知拋物線(xiàn)y=ax2+bx+c與x軸交于A(1.0)、B(-3,0)兩點(diǎn),與y軸交于C(0.3).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)設(shè)P為拋物線(xiàn)上一動(dòng)點(diǎn),點(diǎn)P在直線(xiàn)BC上方時(shí),求△BPC面積的最大值;
(3)若M為拋物線(xiàn)上動(dòng)點(diǎn),點(diǎn)N在拋物線(xiàn)對(duì)稱(chēng)軸上,是否存在點(diǎn)M、N使點(diǎn)A、C.M.N為平行四邊形?如果存在,直接寫(xiě)出點(diǎn)N的坐標(biāo):如果不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/7 2:30:1組卷:306引用:4難度:0.2 -
3.如圖,拋物線(xiàn)y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(-1,0),B(4,0),交y軸于點(diǎn)C.
(1)求拋物線(xiàn)的表達(dá)式.
(2)點(diǎn)D為y軸右側(cè)拋物線(xiàn)上一點(diǎn),是否存在點(diǎn)D,使S△ABC=S△ABD?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.23
(3)將直線(xiàn)BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線(xiàn)交于另一點(diǎn)E,求點(diǎn)E的坐標(biāo).發(fā)布:2025/6/6 23:30:1組卷:40引用:1難度:0.3