先閱讀下面的內(nèi)容,再解決問題:
對于形如x2+2xa+a2,這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項(xiàng)式x2+2xa-3a2,無法直接用公式法.于是可以在二次三項(xiàng)式x2+2xa-3a2中先加上一項(xiàng)a2,使它與x2+2xa的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a).像這樣的方法稱為“配方法”,利用“配方法”,解決下列問題:
(1)分解因式:m2-10m+16.
(2)若x2+y2-8x-14y+65=0.
①當(dāng)x,y,n滿足條件:2x×4y=8n時(shí),求n的值;
②若△ABC三邊長是x,y,z,且z為偶數(shù),求△ABC的周長.
【答案】(1)(m-2)(m-8);
(2)①6②15或17或19或21.
(2)①6②15或17或19或21.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 4:0:8組卷:242引用:4難度:0.5
相似題
-
1.對任意一個(gè)數(shù)m,如果m等于兩個(gè)正整數(shù)的平方和,那么稱這個(gè)數(shù)m為“平方和數(shù)”,若m=a2+b2(a、b為正整數(shù)),記A(m)=ab.例如:29=22+52,29就是一個(gè)“平方和數(shù)”,則A(29)=2×5=10.
(1)判斷45是否是“平方和數(shù)”,若是,請計(jì)算A(45)的值;若不是,請說明理由;
(2)若k是一個(gè)不超過50的“平方和數(shù)”,且A(k)=,求k的值;k-92
(3)對任意一個(gè)數(shù)m,如果m等于兩個(gè)整數(shù)的平方和,那么稱這個(gè)數(shù)m為“廣義平方和數(shù)”,若m和n都是“廣義平方和數(shù)”,請說明它們的乘積mn也是“廣義平方和數(shù)”.發(fā)布:2025/6/8 22:30:1組卷:92引用:2難度:0.6 -
2.若一個(gè)整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”,
例如,5是“完美數(shù)”.因?yàn)?=22+12.
再如,M=5x2+5y2=x2+y2+4x2+4y2
=x2+y2+4x2+4y2+4xy-4xy
=(x+2y)2+(2x-y)2(x、y是整數(shù)),所以M也是“完美數(shù)”.
(1)請你再寫出一個(gè)小于20的“完美數(shù)”;
(2)判斷9x2+1+4y2-12xy(x,y是整數(shù))是否為“完美數(shù)”;并說明原因.發(fā)布:2025/6/8 22:30:1組卷:69引用:1難度:0.7 -
3.如果一個(gè)四位數(shù)M滿足各個(gè)數(shù)位數(shù)字都不為0,且千位數(shù)字與百位數(shù)字之和為9,將M的千位數(shù)字與百位數(shù)字組成的兩位數(shù)記為x,十位數(shù)字與個(gè)位數(shù)字組成的兩位數(shù)記為y,令F(M)=
,若F(M)為整數(shù),則稱數(shù)M是“久久為功數(shù)”.x+2y9
例如:M=2754,∵2+7=9,x=27,y=54,F(xiàn)(M)==15為整數(shù),∴M=2754是“久久為功數(shù)”;又如:M=6339,∵6+3=9,x=63,y=39,F(xiàn)(M)=27+2×549=63+2×399不為整數(shù),∴M=6339不是“久久為功數(shù)”.473
(1)判斷1827,4532是否是“久久為功數(shù)”,并說明理由;
(2)把一個(gè)“久久為功數(shù)”M的千位數(shù)字記為a,十位數(shù)字記為b,個(gè)位數(shù)字記為c,令G(M)=,當(dāng)G(M)為整數(shù)時(shí),求出所有滿足條件的M.2c-3a2b+3a發(fā)布:2025/6/8 21:0:2組卷:111引用:1難度:0.5