下面是某數(shù)學興趣小組探究問題的片段,請仔細閱讀,并完成任務.
題目背景:在Rt△ABC中,AC=BC,∠ACB=90°,點D在AB上.
(1)作圖探討:在Rt△ABC外側(cè),以BC為邊作△CBE≌△CAD;

小明:如圖1,分別以B,C為圓心,以AD,CD為半徑畫弧交于點E,連接BE,CE.則△CBE即為所求作的三角形.
小軍:如圖2,分別過B,C作AB,CD的垂線,兩條垂線相交于點E,則△CBE即為所求作的三角形.
選擇填空:小明得出△CBE≌△CAD的依據(jù)是 ①①,小軍得出△CBE≌△CAD的依據(jù)是 ③③;(填序號)
①SSS
②SAS
③ASA
④AAS
(2)測量發(fā)現(xiàn):如圖3,在(1)中△CBE≌△CAD的條件下,連接AE.興趣小組用幾何畫板測量發(fā)現(xiàn)△CAE和△CDB的面積相等.為了證明這個發(fā)現(xiàn),嘗試延長線段AC至F點,使CF=CA,連接EF.請你完成證明過程.
(3)遷移應用:如圖4,已知∠ABM=∠ACB=90°,AC=BC,點D在AB上,BC=32,∠BCD=15°,若在射線BM上存在點E,使S△ACE=S△BCD,請直接寫出相應的BE的長.
2
【考點】三角形綜合題.
【答案】①;③
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:362引用:3難度:0.3
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發(fā)沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數(shù)式表示)
(2)當△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關系式.發(fā)布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發(fā),均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S.
(1)求出S關于t的函數(shù)關系式.
(2)當點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當點P.Q運動時,線段DE的長度是否改變?證明你的結(jié)論.發(fā)布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發(fā),當點P到達A點時,P,Q兩點同時停止運動.設點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發(fā)布:2025/6/25 5:0:1組卷:189引用:3難度:0.4