在平面直角坐標(biāo)系中,點A(a,0),a2-1a-1=0,且點A,C關(guān)于y軸對稱.
(1)若點B(0,-1),判定△ABC的形狀;
(2)如圖1,在(1)的條件下,D為△ABC內(nèi)部一點,且∠DCA=∠DCB+∠DAC=30°,求證:AB=AD;
(3)如圖2,若B(0,-3),∠ABO=30°,E(-3,0),P為線段BE上一動點,以AP為邊作等腰△APQ,且∠APQ=120°,當(dāng)點P運動時,求△ABQ的面積.

a
2
-
1
a
-
1
3
【考點】幾何變換綜合題.
【答案】(1)△BAC是等腰直角三角形;
(2)證明過程詳見解答;
(3).
(2)證明過程詳見解答;
(3)
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:79引用:1難度:0.1
相似題
-
1.問題背景
如圖(1),△ABD,△AEC都是等邊三角形,△ACD可以由△AEB通過旋轉(zhuǎn)變換得到,請寫出旋轉(zhuǎn)中心、旋轉(zhuǎn)方向及旋轉(zhuǎn)角的大?。?br />嘗試應(yīng)用
如圖(2),在Rt△ABC中,∠ACB=90°,分別以AC,AB為邊,作等邊△ACD和等邊△ABE,連接ED,并延長交BC于點F,連接BD.若BD⊥BC,求的值.DFDE
拓展創(chuàng)新
如圖(3),在Rt△ABC中,∠ACB=90°,AB=2,將線段AC繞點A順時針旋轉(zhuǎn)90°得到線段AP,連接PB,直接寫出PB的最大值.發(fā)布:2025/5/26 3:0:2組卷:4451引用:14難度:0.4 -
2.【發(fā)現(xiàn)奧秘】
(1)如圖1,在等邊三角形ABC中,AB=2,點E是△ABC內(nèi)一點,連接AE,EC,BE,分別將AC,EC繞點C順時針旋轉(zhuǎn)60°得到DC,F(xiàn)C,連接AD,DF,EF.當(dāng)B,E,F(xiàn),D四個點滿足 時,BE+AE+CE的值最小,最小值為 .
【解法探索】
(2)如圖2,在△ABC中,∠ACB=90°,AC=BC,點P是△ABC內(nèi)一點,連接PA,PB,PC,請求出當(dāng)PA+PB+PC的值最小時∠BCP的度數(shù),并直接寫出此時PA:PB:PC的值.(提示:分別將PC,AC繞點C順時針旋轉(zhuǎn)60°得到DC,EC,連接PD,DE,AE)
【拓展應(yīng)用】
(3)在△ABC中,∠ACB=90°,∠BAC=30°,BC=2,點P是△ABC內(nèi)一點,連接PA,PB,PC,直接寫出當(dāng)PA+PB+PC的值最小時,PA:PB:PC的值.發(fā)布:2025/5/26 0:30:1組卷:232引用:1難度:0.4 -
3.如圖1,在等腰直角三角形ABC中,∠BAC=90°,點E,F(xiàn)分別為AB,AC的中點,H為線段EF上一動點(不與點E,F(xiàn)重合),將線段AH繞點A逆時針方向旋轉(zhuǎn)90°得到AG,連接GC,HB.
(1)證明:△AHB≌△AGC;
(2)如圖2,連接GF,HG,HG交AF于點Q.①證明:在點H的運動過程中,總有∠HFG=90°;②若AG=QG,AB=AC=4,求EH的長度.發(fā)布:2025/5/26 1:0:1組卷:181引用:1難度:0.3