如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.
(1)求A、B、P三點的坐標(biāo);
(2)求四邊形PQOB的面積.
【考點】一次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:3614引用:24難度:0.1
相似題
-
1.如圖1,矩形的邊OA在x軸上,邊OC在y軸上,點B的坐標(biāo)為(6,8).D是AB邊上一點(不與點A、B重合),將△BCD沿直線CD翻折,使點B落在點E處.
(1)求直線AC所表示的函數(shù)的表達(dá)式;
(2)如圖2,當(dāng)點E恰好落在矩形的對角線AC上時,求點D的坐標(biāo);
(3)如圖3,當(dāng)以O(shè)、E、C三點為頂點的三角形是等腰三角形時,求△OEA的面積.發(fā)布:2025/6/6 18:0:2組卷:2438引用:6難度:0.3 -
2.如圖,直線y=
x+4交x軸于點A,交y軸于點B,直線y=kx-2k交x軸于點C,交y軸正半軸于點D,交直線AB于點E.43
(1)求AC的長;
(2)若S△AOB=S△EAC,求點E的坐標(biāo)及直線CD的解析式.發(fā)布:2025/6/6 17:30:2組卷:284引用:2難度:0.7 -
3.如圖,在平面直角坐標(biāo)系中,直線l1:y=
與直線l2:y=kx+b(k≠0)相交于點A(a,3),直線l2與y軸交于點B(0,-5).34x
(1)求直線l2的函數(shù)解析式;
(2)將△OAB沿直線l2翻折得到△CAB,使點O與點C重合,AC與x軸交于點D.求證:四邊形AOBC是菱形;
(3)在直線BC下方是否存在點P,使△BCP為等腰直角三角形?若存在,直接寫出點P坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/7 4:0:1組卷:793引用:4難度:0.1