如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.點D是直線AB上一動點.過點D作DE⊥AB,滿足點E在AB上方,∠EAD=∠B,以AE、AD為鄰邊作?ADFE.

(1)求AB的長以及點C到AB的距離.
(2)設線段EF與邊BC交于點M,線段DF與邊BC交于點N.當MN=5時,求BD的長.
(3)連結(jié)CD,沿直線CD分割四邊形ADFE,當分割的兩部分可以拼成一個不重疊無縫隙的三角形時,求AD的長.
【考點】四邊形綜合題.
【答案】(1);
(2)4;
(3)AD=或或10或.
24
5
(2)4;
(3)AD=
18
5
14
5
2
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/22 7:30:2組卷:146引用:1難度:0.1
相似題
-
1.探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過點A作AM⊥EF于點M,請直接寫出AM和AB的數(shù)量關系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點,∠EAF=∠BAD,連接EF,過點A作AM⊥EF于點M,試猜想DF,BE,EF之間有何數(shù)量關系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關系,并證明你的猜想.12
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).猜想:∠B與∠D滿足關系:.12發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1 -
2.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當AD與邊BC相交,點D與點F在直線AC的兩側(cè)時,BD與CF的數(shù)量關系為
(2)將圖①中的菱形ADEF繞點A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當△ACE為直角三角形時,直接寫出CE的長度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點,F(xiàn)是正方形ABCD外一點,連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說明理由.
(2)在(1)的條件下,當BE:CE=1:2,∠BEC=135°時,求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5