如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù);
(3)探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM⊥DE于點(diǎn)M,連接BE.
①∠AEB的度數(shù)為 9090°;
②線段DM,AE,BE之間的數(shù)量關(guān)系為 AE=BE+2DMAE=BE+2DM.(直接寫出答案,不需要說明理由)

【考點(diǎn)】三角形綜合題.
【答案】90;AE=BE+2DM
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/17 6:0:2組卷:365引用:3難度:0.6
相似題
-
1.(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是;
(2)問題解決:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF.發(fā)布:2025/6/17 11:0:1組卷:624引用:7難度:0.4 -
2.如圖,三角形ABO的三個頂點(diǎn)的坐標(biāo)分別為O(0,0),A(5,0),B(2,4).
(1)求三角形OAB的面積;
(2)若O,B兩點(diǎn)的位置不變,點(diǎn)M在x軸上,則點(diǎn)M在什么位置時,三角形OBM的面積是三角形OAB的面積的2倍?
(3)若O,A兩點(diǎn)的位置不變,點(diǎn)N由點(diǎn)B向上或向下平移得到,則點(diǎn)N在什么位置時,三角形OAN的面積是三角形OAB的面積的2倍?發(fā)布:2025/6/17 6:30:2組卷:331引用:2難度:0.3 -
3.已知,如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),B為x軸負(fù)半軸上一點(diǎn).
(1)若BP平分∠ABO,AP平分∠BAO的外角,求∠P.
(2)如圖2,C為x軸正半軸上一點(diǎn),BP平分∠ABC,且P在AC的垂直平分線上.若∠ABC=2∠ACB,求證:AP∥BC.
(3)在第(2)問的條件下,D是AB上一點(diǎn),E是x軸正半軸上一點(diǎn),連AE交DP于H.當(dāng)∠DHE與∠ABE滿足什么條件時,DP=AE,請說明理由.發(fā)布:2025/6/17 19:30:1組卷:75引用:1難度:0.3
相關(guān)試卷