如圖,拋物線y=-ax2+bx-2經(jīng)過A(4,0),B(1,0)兩點.
(1)求出拋物線的解析式;
(2)P是拋物線在第一象限上的一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)若拋物線上有一點Q(點Q不與點B重合),使得點Q與點B到直線AC的距離相等,請直接寫出點Q坐標.

【考點】二次函數(shù)綜合題.
【答案】(1)拋物線的解析式為;
(2)存在,符合條件的點P的坐標為(2,1);
(3)點Q的坐標為(3,1)或或.
y
=
-
1
2
x
2
+
5
2
x
-
2
(2)存在,符合條件的點P的坐標為(2,1);
(3)點Q的坐標為(3,1)或
(
2
+
7
,
7
2
-
5
2
)
(
2
-
7
,-
7
2
-
5
2
)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:354引用:3難度:0.3
相似題
-
1.如圖,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+c與x軸交于點A、B(A左B右),與y軸交于點C,直線y=-x+3經(jīng)過點B、C,AB=4.
(1)求拋物線的解析式;
(2)點D在直線BC上方的拋物線上,過點D作x軸的垂線,垂足為F,交BC于點E,DE=2EF,求點D的坐標;
(3)在(2)的條件下,點G在點B右側(cè)x軸上,連接CG,AC,,過點G作GP⊥x軸交拋物線于點P,連接BP,點H在y軸負半軸上,連接HF,若∠OHF+∠GPB=45°,連接DH,求直線DH的解析式.∠ACO=12∠AGC發(fā)布:2025/5/23 12:30:2組卷:170引用:1難度:0.3 -
2.如圖,拋物線
與x軸相交于點A,與y軸交于點B,C為線段OA上的一個動點,過點C作x軸的垂線,交直線AB于點D,交該拋物線于點E.y=-43x2+103x+2
(1)求直線AB的表達式;
(2)當△BED為直角三角形時,求點C的坐標;
(3)當∠BED=2∠OAB時,求△BED的面積.發(fā)布:2025/5/23 13:0:1組卷:304引用:1難度:0.1 -
3.已知二次函數(shù)解析式為y=x2-bx+2b-3.
(1)當拋物線經(jīng)過點(1,2)和點(m,n)時,等式m2-4m-n=-5是否成立?并說明理由;
(2)已知點P(4,5)和點Q(-1,-5),且線段PQ與拋物線只有一個交點,求b的取值范圍.發(fā)布:2025/5/23 13:0:1組卷:278引用:1難度:0.4
相關(guān)試卷