(1)如圖1,在等腰Rt△ABC中,AC=BC=4,∠ACB=90°,D是BC邊的中點,E是AB邊上一動點,則EC+ED的最小值是 2525;
(2)如圖2,在正△ABC中,AB=4,P、M、N分別是BC、CA、AB上的動點,
①PM+MN的最小值為 2323;
②求PM+MN+NP的最小值.
(3)如圖3,正方形ABCD的邊長為4,E、F分別是邊AB和BC上的動點且始終滿足AE=BF,連結(jié)DE、DF,求DE+DF的最小值.

5
5
3
3
【考點】四邊形綜合題.
【答案】2;2
5
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/7 8:0:9組卷:347引用:1難度:0.3
相似題
-
1.如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,
AE平分∠DAM.
(1)寫出AM、AD、MC三條線段的數(shù)量關系:;
請對你猜想的結(jié)論進行證明;
(2)寫出AM、DE、BM三條線段的數(shù)量關系:.(不必證明)
拓展延伸:
若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.發(fā)布:2025/5/21 19:0:1組卷:44引用:4難度:0.3 -
2.【基礎問題】
如圖①,矩形ABCD中,點E為AB邊上一點,連接DE,作EF⊥DE交BC于點F,且DE=FE,求證:△AED≌△BFE.
【拓展延伸】
(1)如圖②,點E為平行四邊形ABCD內(nèi)部一點,EA=EB,DA⊥AE,作DF⊥BA交BA延長線于點F,若DA=2EA,AB=5,則平行四邊形ABCD的面積為 ;
(2)如圖③,在正方形ABCD中,AD=6,在CD邊上取一點E,使EC=2DE,將△AED沿AE翻折到△AED′位置,作D′F⊥AB于點F,在D′F右側(cè)作∠FGD'=90°,則△FGD'面積的最大值為 .發(fā)布:2025/5/21 17:0:2組卷:160引用:1難度:0.3 -
3.如圖,矩形ABCD中,AB=2
,BC=4,連結(jié)對角線AC,E為AC的中點,F(xiàn)為AB邊上的動點,連結(jié)EF,作點C關于EF的對稱點C′,連結(jié)C′E,C′F,若△EFC′與△ACF的重疊部分(△EFG)面積等于△ACF的3,則BF=.14發(fā)布:2025/5/21 18:0:1組卷:1667引用:8難度:0.1