正方形ABCD中,AB=4,點E、F分別在AB、BC邊上(不與點A、B重合).

(1)如圖1,連接CE,作DM⊥CE,交CB于點M.若BE=3,則DM=55;
(2)如圖2,連接EF,將線段EF繞點F順時針旋轉,當點E落在正方形上時,記為點G;再將線段FG繞點G順時針旋轉,當點F落在正方形上時,記為點H;依此操作下去…,
①如圖3,線段EF經過兩次操作后拼得△EFD,其形狀為等邊三角形等邊三角形,在此條件下,求證:AE=CF;
②若線段EF經過三次操作恰好拼成四邊形EFGH,
ⅰ請判斷四邊形EFGH的形狀為正方形正方形,此時AE與BF的數量關系是AE=BFAE=BF;
ⅱ以ⅰ中的結論為前提,設AE的長為x,四邊形EFGH的面積為y,求y與x的函數關系式及面積y的取值范圍.
【考點】四邊形綜合題.
【答案】5;等邊三角形;正方形;AE=BF
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/17 8:0:9組卷:73引用:3難度:0.1
相似題
-
1.將正方形ABCD繞點A逆時針旋轉α°到正方形AEFG.
(1)如圖1,當0°<α<90°時,EF與CD相交于點H.求證:DH=EH;
(2)如圖2,當0°<α<90°,點F、D、B正好共線時,
①求∠AFB度數;
②若正方形ABCD的邊長為1,求CH的長:
(3)連接DE,EC,FC.如圖3,正方形AEFG在旋轉過程中,是否存在實數m使AE2=DE2+mFC2-EC2總成立?若存在,求m的值;若不存在,請說明理由.發(fā)布:2025/6/8 13:30:1組卷:67引用:1難度:0.2 -
2.定義:四邊形ABCD中,將對角線AC和BD的平方和,即AC2+BD2的值稱為四邊形ABCD的“特征數”.
(1)①在菱形ABCD中,AB=4,∠BAD=60°,則菱形ABCD的“特征數”=;
②正方形EFGH的“特征數”等于16,則邊長=;
(2)平行四邊形ABCD中,AB=a,BC=b,試證明:平行四邊形ABCD的“特征數”為2a2+2b2;
(3)利用(2)的結論解決下列問題:
平行四邊形ABCD中,,BC=6,且AC?BD=60,AC<BD,試求AC和BD的長度.AB=42發(fā)布:2025/6/8 15:0:1組卷:373引用:3難度:0.2 -
3.如圖,矩形ABCD中,AB=4,AD=8,E在AD上,DE=3,點P從點B出發(fā),以每秒1個單位長度的速度沿著BC邊向終點C運動,連接PE,設點P運動的時間為t秒.
(1)過P作PF⊥AD,垂足為F,用含t的式子表示:EF=,PC=;
(2)當t=2時,判斷△PEC是否是直角三角形,并說明理由;
(3)當∠PEC=∠DEC時,求t的值.發(fā)布:2025/6/8 12:30:1組卷:43引用:3難度:0.4