如圖,在△ABC中,點(diǎn)D,E分別在BC,AC上,連接AD,AD=DC,點(diǎn)E為AC中點(diǎn),連接BE交AD于點(diǎn)N,BN=NE.

(1)如圖1,若∠ANE=90°,AE=43,求DC的長(zhǎng);
(2)如圖2,延長(zhǎng)BA至點(diǎn)M,連接ME,AN=ME,若∠ABC=45°,求證:AM+NE=2AN;
(3)如圖3,延長(zhǎng)BA至點(diǎn)M,連接ME,ME=35,∠ADC=∠MEB=90°,點(diǎn)P為AB中點(diǎn),連接EP,將△BEP沿EP翻折得到△B'PE,點(diǎn)F,G分別為EP,EB'上的動(dòng)點(diǎn)(不與端點(diǎn)重合),連接AF,F(xiàn)G,連接MG交直線AE于點(diǎn)H,當(dāng)AF+FG取得最小值時(shí),直接寫(xiě)出AF+FGAP的值.
AE
=
4
3
AM
+
NE
=
2
AN
ME
=
3
5
AF
+
FG
AP
【考點(diǎn)】幾何變換綜合題.
【答案】(1)8;
(2)見(jiàn)解析;
(3).
(2)見(jiàn)解析;
(3)
6
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/22 14:0:1組卷:200引用:3難度:0.1
相似題
-
1.已知點(diǎn)M,N是直線l上自左向右的兩點(diǎn),且MN=8,點(diǎn)P是MN的中點(diǎn),點(diǎn)Q是直線l上一點(diǎn)(不與點(diǎn)M,N重合),直線m經(jīng)過(guò)點(diǎn)Q,MA⊥直線m于點(diǎn)A,NB⊥直線m于點(diǎn)B,連接PA,PB.
(1)如圖1,當(dāng)點(diǎn)Q在點(diǎn)P,N之間時(shí),求證:PA=PB;
(2)如圖2,當(dāng)點(diǎn)Q在點(diǎn)N的右側(cè)時(shí),若PN=2NQ,且∠AQM=30°,求AB和AP的長(zhǎng)度.發(fā)布:2025/5/22 17:0:1組卷:74引用:1難度:0.3 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點(diǎn)F,交BD于點(diǎn)E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說(shuō)明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點(diǎn)O,點(diǎn)G是△BCE內(nèi)一點(diǎn),∠CGE=90°,GE=3,將△CGE繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△CMH,E點(diǎn)對(duì)應(yīng)點(diǎn)為M,G點(diǎn)的對(duì)應(yīng)點(diǎn)為H,且點(diǎn)O,G,H在一條直線上直接寫(xiě)出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.如圖1,在Rt△ABC中,∠BAC=90°,∠ACB=60°,AC=1,點(diǎn)A1,B1為邊AC,BC的中點(diǎn),連接A1B1,將△A1B1C繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(0°≤α≤360°).
(1)如圖1,當(dāng)α=0°時(shí),=;BB1,AA1所在直線相交所成的較小夾角的度數(shù)是 ;BB1AA1
(2)將△A1B1C繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至圖2所示位置時(shí),(1)中結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)當(dāng)△A1B1C繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)過(guò)程中,請(qǐng)直接寫(xiě)出S△ABA1的最大值,S△ABA1=.發(fā)布:2025/5/22 19:0:1組卷:432引用:3難度:0.4