定義:如果代數(shù)式A=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與B=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù)),滿足a1+a2=0,b1+b2=0,c1+c2=0,則稱這兩個代數(shù)式A與B互為“和諧式”,對于上述“和諧式”A、B,下列三個結(jié)論正確的個數(shù)為( ?。?br />①若A=-x2-43mx-2,B=x2-2nx+n,則(m+n)2023的值為-1;
②若k為常數(shù),關(guān)于x的方程A=k與B=k的解相同,則k=0;
③若p,q為常數(shù),pA+qB的最小值為p-q,則A有最小值,且最小值為1.
4
3
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/15 8:0:8組卷:439引用:6難度:0.7
相似題
-
1.設(shè)x,y都是實數(shù),請?zhí)骄肯铝袉栴},
(1)嘗試:①當(dāng)x=-2,y=1時,∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當(dāng)x=1,y=2時,∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當(dāng)x=2,y=2.5時,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當(dāng)x=3,y=3時,∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關(guān)系?試說明理由.
(3)運用:求代數(shù)式的最小值.x2+4x2發(fā)布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( )
發(fā)布:2024/12/16 14:30:3組卷:102引用:3難度:0.9 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( ?。?/h2>
發(fā)布:2024/12/23 12:30:2組卷:397引用:9難度:0.4