如圖,拋物線y=ax2+bx+3與x軸交于A(-2,0)、B(6,0)兩點,與y軸交于點C.直線l與拋物線交于A、D兩點,與y軸交于點E,點D的橫坐標(biāo)為4.
(1)求拋物線的解析式與直線l的解析式;
(2)若點P是拋物線上的點且在直線l上方,連接PA、PD,求當(dāng)△PAD面積最大時點P的坐標(biāo)及該面積的最大值;
(3)若點Q是x軸上的點,且∠ADQ=45°,請直接寫出點Q的坐標(biāo).
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+x+3,y=x+1;
(2)S最大值為,此時P(1,);
(3)(3,0).
1
4
1
2
(2)S最大值為
27
4
15
4
(3)(3,0).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:174引用:2難度:0.1
相似題
-
1.已知:拋物線的解析式為y=x2-(2m-1)x+m2-m,
(1)求證:此拋物線與x軸必有兩個不同的交點;
(2)若此拋物線與直線y=x-3m+4的一個交點在y軸上,求m的值.發(fā)布:2025/6/16 17:0:1組卷:621引用:37難度:0.1 -
2.如圖,拋物線y=ax2+
經(jīng)過△ABC的三個頂點,點A坐標(biāo)為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.94
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式;
(2)點F為線段AC上一動點,過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當(dāng)四邊形OEFG為正方形時,求出F點的坐標(biāo).發(fā)布:2025/6/16 19:30:1組卷:730引用:9難度:0.4 -
3.如圖,已知拋物線y=ax2+bx+c過點A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點H是該拋物線第四象限的任意一點,求四邊形OCHA的最大面積;
(3)若點Q在x軸上,點G為該拋物線的頂點,且∠QGA=45°,求點Q的坐標(biāo).發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5