已知,在等腰直角△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),連接AD,以AD為邊向右作等腰直角△ADE,AD=AE,連接CE.
(1)填空:當(dāng)點(diǎn)D在線段BC上如圖(一),可通過(guò)證明①△ABDABD≌△ACEACE,得到BD=CECE,進(jìn)而判斷②CE,CD,BC三條線段的數(shù)量關(guān)系為 BC=CE+CDBC=CE+CD.
(2)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上且其他條件不變?nèi)鐖D(二),(1)中CE,CD,BC三條線段的數(shù)量關(guān)系是否仍然成立?如果成立,請(qǐng)說(shuō)明理由;如果不成立,請(qǐng)寫出你的結(jié)論,并證明.
(3)當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上且其他條件不變,請(qǐng)你構(gòu)造出圖形,并寫出CE,CD,BC三條線段的數(shù)量關(guān)系.

【考點(diǎn)】三角形綜合題.
【答案】ABD;ACE;CE;BC=CE+CD
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/7 8:0:9組卷:50引用:4難度:0.3
相似題
-
1.線段和角是我們初中數(shù)學(xué)常見(jiàn)的平面幾何圖形,它們的表示方法、和差計(jì)算以及線段的中點(diǎn)、角的平分線的概念等有很多相似之處,所以研究線段或角的問(wèn)題時(shí)可以運(yùn)用類比的方法.
(1)特例感知:
如圖1,已知AB=10cm,點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn).若BC=6cm,則線段DE=cm.
(2)數(shù)學(xué)思考:
如圖1,已知AB=10cm,若C是線段AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E是線段BC的中點(diǎn),線段DE的長(zhǎng)會(huì)發(fā)生變化嗎?說(shuō)明理由.
(3)知識(shí)遷移:
如圖2,OB是∠AOC內(nèi)部的一條射線,把三角尺中60°角的頂點(diǎn)放在點(diǎn)O處,轉(zhuǎn)動(dòng)三角尺,當(dāng)三角尺的邊OD平分∠AOB時(shí),在角尺的另一邊OE與正好平分∠BOC,求∠AOC的度數(shù).發(fā)布:2025/6/5 16:30:2組卷:126引用:1難度:0.6 -
2.在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),且
,P點(diǎn)為y軸上一動(dòng)點(diǎn).(b-2)2+|a-6|+c-6=0
(1)求點(diǎn)B、M的坐標(biāo);
(2)當(dāng)P點(diǎn)在線段OM上運(yùn)動(dòng)時(shí),試問(wèn)是否存在一個(gè)點(diǎn)P使S△PAB=13,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)不論點(diǎn)P點(diǎn)運(yùn)動(dòng)到直線OM上的任何位置(不包括點(diǎn)O,M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請(qǐng)寫出來(lái)并請(qǐng)選擇其中一種結(jié)論進(jìn)行證明;如果沒(méi)有,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/5 18:0:1組卷:35引用:3難度:0.1 -
3.在△ABC中,∠BAC=90°,
,D為BC上任意一點(diǎn),E為AC上任意一點(diǎn).AB=AC=22
(1)如圖1,連接DE,若∠CDE=60°,AC=4AE,求DE的長(zhǎng).
(2)如圖2,若點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD上任意一點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)M,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG.點(diǎn)N在AC上,∠AGN=∠AEG且,求證:GN=MF.AM+AF=2AE
(3)如圖3,點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD的中點(diǎn),連接EF、BF,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG,H為直線AB上一動(dòng)點(diǎn),連接FH,將△BFH沿FH翻折至△ABC所在平面內(nèi),得到△B′FH,連接B′G,直接寫出線段B′G的長(zhǎng)度的最大值.發(fā)布:2025/6/5 18:0:1組卷:415引用:2難度:0.1