請閱讀下面文字并完成相關(guān)任務(wù).
勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”.在我國最早對勾股定理進行證明的是三國時期吳國的數(shù)學(xué)家趙爽.
(1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以驗證勾股定理,思路是:大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即12ab×4+(b-a)2,從而得到等式c2=12ab×4+(b-a)2,化簡便得結(jié)論a2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.現(xiàn)在,請你用“雙求法”解決下面問題:
如圖2,在△ABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,設(shè)BD=x,求x的值.
?
(2)2002年在北京召開的國際數(shù)學(xué)家大會會標和2021年在上海召開的國際數(shù)學(xué)教育大會會標,都包含了趙爽的弦圖.如圖3,如果大正方形的面積為18,直角三角形中較短直角邊長為a,較長直角邊長為b,且a2+b2=ab+10,那么小正方形的面積為 22.
(3)勾股定理本身及其驗證和應(yīng)用過程都體現(xiàn)了一種重要的數(shù)學(xué)思想是 DD.
A.函數(shù)思想
B.整體思想
C.分類討論思想
D.?dāng)?shù)形結(jié)合思想
1
2
ab
×
4
+
(
b
-
a
)
2
1
2
ab
×
4
+
(
b
-
a
)
2
【考點】勾股定理的證明.
【答案】2;D
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/19 8:0:2組卷:307引用:2難度:0.5
相似題
-
1.如圖是“趙爽弦圖”,△ABH、△BCG、△CDF和△DAE是四個全等的直角三角形,四邊形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.
發(fā)布:2025/6/23 0:0:1組卷:9114引用:71難度:0.7 -
2.如圖,是由四個直角邊分別為3和4全等的直角三角形拼成的“趙爽弦圖”,那么陰影部分面積為
發(fā)布:2025/6/24 12:30:2組卷:896引用:13難度:0.9 -
3.歷史上對勾股定理的一種證法采用了下列圖形:其中兩個全等的直角三角形邊AE、EB在一條直線上.證明中用到的面積相等關(guān)系是( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:1055引用:15難度:0.7