如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0),點B(3,0),與y軸交于點C(0,-3).
(1)求拋物線的函數(shù)表達式;
(2)在對稱軸上找一點Q,使△AQC的周長最小,求點Q的坐標;
(3)在(2)的條件下,點P是拋物線上的一點,當(dāng)△AQC和△AQP面積相等時,請求出所有點P的坐標.
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3;
(2)Q(1,-2);
(3)P1(1,-4),,.
(2)Q(1,-2);
(3)P1(1,-4),
P
2
(
1
+
17
2
,
1
-
17
2
)
P
3
(
1
-
17
2
,
1
+
17
2
)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:716引用:3難度:0.5
相似題
-
1.如圖,拋物線y=ax2+bx+3與x軸的兩個交點坐標為A(-1,0)、B(3,0).
(1)求拋物線y=ax2+bx+3的函數(shù)表達式;
(2)矩形PQMN的頂點P,Q在x軸上(P,Q不與A、B重合),另兩個頂點M,N在拋物線上(如圖).
①當(dāng)點P在什么位置時,矩形PQMN的周長最大?求這個最大值并寫出點P的坐標;
②判斷命題“當(dāng)矩形PQMN周長最大時,其面積最大”的真假,并說明理由.發(fā)布:2025/5/24 4:30:1組卷:436引用:2難度:0.5 -
2.如圖,點O(0,0),A(-4,-1),線段AB與x軸平行,且AB=2,點B在點A的右側(cè),拋物線l:y=kx2-2kx-3k(k≠0).
(1)①該拋物線的對稱軸為 ;
②當(dāng)0≤x≤3時,求y的最大值(用含k的代數(shù)式表示).
(2)當(dāng)拋物線l經(jīng)過點C(0,3)時,
①點B (填“是”或“不”)在l上;
②連接CD,點P是第一象限內(nèi)拋物線上的動點,設(shè)點P的橫坐標為m,過點P作PE⊥CD,垂足為點E,則PE=時,m=.2
(3)在(2)的條件下,若線段AB以每秒2個單位長的速度向下平移,設(shè)平移的時間為t(秒),
①若l與線段AB總有公共點,求t的取值范圍;
②若l同時以每秒3個單位長的速度向下平移,l在y軸及其右側(cè)的圖象與直線AB總有兩個公共點,直接寫出t的取值范圍.發(fā)布:2025/5/24 4:30:1組卷:276引用:1難度:0.2 -
3.如圖,拋物線y=-x2+2nx(n>2)與x軸交于點A,點P為線段OA上一點,過P作PB⊥x軸交拋物線y=-x2+2nx(n>2)于點B,過B作BC∥x軸交拋物線y=-x2+2nx(n>2)于點C,連接AC;
(1)如圖1,若點A的橫坐標為,92
①求拋物線的解析式;
②當(dāng)∠BCA=45°時,求點P的坐標;
(2)在(1)的條件下,當(dāng)AP=1,點Q為線段AC上一點,點N為x軸上一點,且∠PQN=90°,將△AQP沿直線PQ翻折得到△A'QP,A'Q所在的直線交x軸于點M,且=PMMN,求點Q的縱坐標.17發(fā)布:2025/5/24 4:30:1組卷:792引用:3難度:0.3