如圖,已知拋物線y=ax2+bx+3與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,連接BC.
(1)求拋物線的解析式;
(2)若點(diǎn)P為線段BC上的一動點(diǎn)(不與B、C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時,點(diǎn)D是拋物線的對稱軸上的動點(diǎn),在拋物線上是否存在點(diǎn)E,使得以A、P、D、E為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:988引用:15難度:0.2
相似題
-
1.如圖1,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A,點(diǎn)B,與y軸相交于點(diǎn)C,AO=BO=2,C(0,-4).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P為CO上一點(diǎn),過點(diǎn)P作CO的垂線,與拋物線相交于點(diǎn)E,點(diǎn)F(點(diǎn)E在點(diǎn)F的左側(cè)),設(shè)PF=m,PC=d,求d與m的函數(shù)解析式;
(3)如圖3,在(2)的條件下,連接EO,取EO的中點(diǎn)G,連接CG并延長CG至點(diǎn)Q,使得QG=CG,取CP的中點(diǎn)H,連接FH并延長FH交拋物線于點(diǎn)T,連接TQ,若tan∠FTQ=,求點(diǎn)F的坐標(biāo).169發(fā)布:2025/5/26 1:30:1組卷:202引用:1難度:0.1 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸交于A、B兩點(diǎn)(點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè)),與y軸交于點(diǎn)C,已知OA=1,OC=OB.
(1)求拋物線的解析式;
(2)若D(2,m)在該拋物線上,連接CD、DB,求四邊形OCDB 的面積;
(3)設(shè)E是該拋物線上位于對稱軸右側(cè)的一個動點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)E作EH⊥x軸于點(diǎn)H,再過點(diǎn)F作FG⊥x軸于點(diǎn)G,得到矩形EFGH,在點(diǎn)E的運(yùn)動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長.發(fā)布:2025/5/26 1:30:1組卷:277引用:2難度:0.3 -
3.在平面直角坐標(biāo)系xOy中,拋物線T:y=a(x+4)(x-m)與x軸交于A,B兩點(diǎn),m>-3,點(diǎn)B在點(diǎn)A的右側(cè),拋物線T的頂點(diǎn)為記為P.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);(用含m的代數(shù)式表示)
(2)若a=m+3,且△ABP為等腰直角三角形,求拋物線T的解析式;
(3)將拋物線T進(jìn)行平移得到拋物線T',拋物線T'與x軸交于點(diǎn)B,C(4,0),拋物線T'的頂點(diǎn)記為Q.若0<a<,且點(diǎn)C在點(diǎn)B的右側(cè),是否存在直線AP與CQ垂直的情形?若存在,求m的取值范圍;若不存在,請說明理由.12發(fā)布:2025/5/26 1:30:1組卷:185引用:2難度:0.2