設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(1)若a=3,求曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
【答案】(1)2x+y+1=0;
(2)當(dāng)a≤0時(shí),f(x)為增函數(shù);a>0時(shí),f(x)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(0,).
(2)當(dāng)a≤0時(shí),f(x)為增函數(shù);a>0時(shí),f(x)的單調(diào)遞減區(qū)間為
[
1
a
,
+
∞
)
1
a
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:117引用:3難度:0.5
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:142引用:2難度:0.2