某公司計劃購進一批原料加工銷售,已知該原料的進價為6.2萬元/t,加工過程中原料的質(zhì)量有20%的損耗,加工費m(萬元)與原料的質(zhì)量x(t)之間的關(guān)系為m=50+0.2x,銷售價y(萬元/t)與原料的質(zhì)量x(t)之間的關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)銷售收入為P(萬元),求P與x之間的函數(shù)關(guān)系式;
(3)原料的質(zhì)量x為多少噸時,所獲銷售利潤最大,最大銷售利潤是多少萬元?(銷售利潤=銷售收入-總支出).
【答案】(1)y=-x+20;(2)P=-x2+16x;(3)原料的質(zhì)量為24噸時,所獲銷售利潤最大,最大銷售利潤是65.2萬元.
1
4
1
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2695引用:7難度:0.6
相似題
-
1.為進一步緩解城市交通壓力,義烏市政府推出公共自行車,公共自行車在任何一個網(wǎng)店都能實現(xiàn)通租通還,某校學(xué)生小明統(tǒng)計了周六校門口停車網(wǎng)點各時段的借、還自行車數(shù),以及停車點整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y的值表示8:00點時的存量,x=2時的y值表示9:00點時的存量…以此類推,他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段 x 還車數(shù) 借車數(shù) 存量y 7:00-8:00 1 7 5 15 8:00-9:00 2 8 7 n … … … … …
(1)m=,解釋m的實際意義:;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知10:00-11:00這個時段的借車數(shù)比還車數(shù)的一半還要多2,求此時段的借車數(shù).發(fā)布:2025/5/22 23:0:1組卷:374引用:4難度:0.3 -
2.某公司生產(chǎn)的一種季節(jié)性產(chǎn)品,其單件成本與售價隨季節(jié)的變化而變化.據(jù)調(diào)查:
①該種產(chǎn)品一月份的單件成本為6.6元/件,且單件成本每月遞增0.2元/件;
②該種產(chǎn)品一月份的單件售價為5元/件,六月份的單件售價最高可達到10元/件,單件售價y(元/件)與時間x(月)的二次函數(shù)圖象如圖所示.
(1)求該產(chǎn)品在六月份的單件生產(chǎn)成本;
(2)該公司在哪個月生產(chǎn)并銷售該產(chǎn)品獲得的單件收益w最大?
(3)結(jié)合圖象,求在全年生產(chǎn)與銷售中一共有幾個月產(chǎn)品的單件收益不虧損?(注:單件收益=單件售價-單件成本)發(fā)布:2025/5/22 22:30:1組卷:245引用:3難度:0.6 -
3.某超市經(jīng)銷一種商品,每千克成本為40元,試經(jīng)銷發(fā)現(xiàn),該種商品的每天銷售量y(件數(shù))與銷售單價x(元/件)滿足一次函數(shù)關(guān)系,其每天銷售單價,銷售量的幾組對應(yīng)值如表所示:
銷售單價x(元/件) 55 60 70 … 銷售量y(件) 70 60 40 …
(2)求銷售單價定為多少時,當(dāng)天的銷售利潤是1050元?
(3)銷售過程中要求走出的商品數(shù)不少于60件,求銷售單價定為多少時,才能使當(dāng)天的銷售利潤最大?最大利潤是多少?發(fā)布:2025/5/22 23:30:1組卷:283引用:3難度:0.7