如圖,已知拋物線y=a8(x+2)(x-4)(a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線y=-33x+b與拋物線的另一交點為D,點D的橫坐標(biāo)為-5.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒 1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當(dāng)點F的坐標(biāo)是多少時,點M在整個運動過程中用時最少?
(3)若P(m,n)為線段OB垂直平分線上一個動點.連接PO、PB,若∠OPB 不小于 60°,求n的取值范圍.
y
=
a
8
(
x
+
2
)
(
x
-
4
)
(
a
y
=
-
3
3
x
+
b
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-x-;
(2)F(-2,2);
(3)-2≤n≤2.
3
9
2
3
9
8
3
9
(2)F(-2,2
3
(3)-2
3
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/2 8:0:9組卷:121引用:1難度:0.2
相似題
-
1.已知拋物線y=x2+tx-t-1(t>0)過點(h,-4),交x軸于A,B兩點(點A在點B左側(cè)),交y軸于點C,且對于任意實數(shù)m,恒有m2+tm-t-1≥-4成立.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上,是否存在點M,使得∠BMC=∠BAC,若存在,求出點M的坐標(biāo),若不存在,請說明理由;
(3)若P1(n-2,y1),P2(n,y2),P3(n+2,y3)三點都在拋物線上且總有y3>y1>y2,請直接寫出n的取值范圍.發(fā)布:2025/5/23 14:30:1組卷:453引用:3難度:0.3 -
2.如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A,B兩點(點A在點B的左側(cè)),拋物線上另有一點C在第一象限,滿足∠ACB為直角,且使∠OCA=∠OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在拋物線的對稱軸上是否存在一點P,使得△BCP是以BC為腰的等腰三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/5/23 15:0:2組卷:500引用:1難度:0.2 -
3.已知拋物線y=ax2+bx+c(a≠0)的頂點D及與y軸的交點C都在直線y=x+1上,對稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若在自變量x的值滿足t≤x≤t+2時,與其對應(yīng)的函數(shù)值y的最小值為-7,求此時t的值;
(3)設(shè)m為拋物線與x軸一個交點的橫坐標(biāo),求的值.m8+m4-20m2+6m3+14m+6發(fā)布:2025/5/23 15:0:2組卷:431引用:1難度:0.4
相關(guān)試卷