【證明體驗】(1)如圖1,△ABC中,D為BC邊上任意一點,作DE⊥AC于E,若∠CDE=12∠A,求證:△ABC為等腰三角形;
【嘗試應用】
(2)如圖2,四邊形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的長;
【拓展延伸】
(3)如圖3,△ABC中,點D在AB邊上滿足CD=BD,∠ACB=90°+12∠B,若AC=103,BC=20,求AD的長.

1
2
1
2
3
【考點】相似形綜合題.
【答案】(1)證明見解答過程;
(2)2;
(3)18.
(2)2
5
(3)18.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/25 20:0:1組卷:497引用:1難度:0.3
相似題
-
1.如圖,將正方形紙片ABCD沿PQ折疊,使點C的對稱點E落在邊AB上,點D的對稱點為點F,EF交AD于點G,連接CG交PQ于點H,連接CE,EH.
(1)求證:△PBE∽△QFG;
(2)求∠ECG的度數(shù);
(3)求證:EG2-CH2=GQ?GD.發(fā)布:2025/5/25 21:0:1組卷:400引用:2難度:0.3 -
2.如圖1,在菱形ABCD中,∠ABC是銳角,P、Q分別是邊DC、BC延長線上的動點,連接AP、AQ分別交BC、DC于點M、N.
(1)當AP⊥BC且∠PAQ=∠D時,證明:△ABM≌△ADN;
(2)如圖2,當∠PAQ=∠BCD時,連接AC、PQ.12
①證明:AC2=CP?CQ;
②若AB=4,AC=2,則當CM為何值時,△APQ是以PQ為底邊的等腰三角形.發(fā)布:2025/5/25 21:30:1組卷:184引用:1難度:0.1 -
3.問題提出
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點E在△ABC內(nèi)部,直線AD與BE交于點F.線段AF,BF,CF之間存在怎樣的數(shù)量關系?
問題探究
(1)先將問題特殊化如圖(2),當點D,F(xiàn)重合時,直接寫出一個等式,表示AF,BF,CF之間的數(shù)量關系;
(2)再探究一般情形如圖(1),當點D,F(xiàn)不重合時,證明(1)中的結論仍然成立.
問題拓展
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數(shù)),點E在△ABC內(nèi)部,直線AD與BE交于點F.直接寫出一個等式,表示線段AF,BF,CF之間的數(shù)量關系.發(fā)布:2025/5/25 17:30:1組卷:5696引用:14難度:0.6