已知函數(shù)f(x)=2x-ax-(a+2)lnx(a∈R).
(1)當(dāng)a=4時,求函數(shù)f(x)的極值;
(2)討論函數(shù)f(x)的單調(diào)性.
f
(
x
)
=
2
x
-
a
x
-
(
a
+
2
)
lnx
(
a
∈
R
)
【考點(diǎn)】利用導(dǎo)數(shù)求解函數(shù)的極值.
【答案】(1)x=1時,函數(shù)f(x)取得極大值,f(1)=-2;
x=2時,函數(shù)f(x)取得極小值,f(2)=2-6ln2.
(2)a≤0時,函數(shù)f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
0<a<2時,函數(shù)f(x)在(0,),(1,+∞)上單調(diào)遞增;在(,1)上單調(diào)遞減.
a=2時,函數(shù)f(x)在x∈(0,+∞)上單調(diào)遞增.
a>2時,函數(shù)f(x)在(0,1),(,+∞)上單調(diào)遞增;在(1,)上單調(diào)遞減.
x=2時,函數(shù)f(x)取得極小值,f(2)=2-6ln2.
(2)a≤0時,函數(shù)f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
0<a<2時,函數(shù)f(x)在(0,
a
2
a
2
a=2時,函數(shù)f(x)在x∈(0,+∞)上單調(diào)遞增.
a>2時,函數(shù)f(x)在(0,1),(
a
2
a
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:99引用:1難度:0.5
相似題
-
1.設(shè)函數(shù)f(x)=x3+2x2-4x+1.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 12:0:2組卷:95引用:5難度:0.7 -
2.已知函數(shù)f(x)=x-lnx.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 11:0:2組卷:281引用:8難度:0.6 -
3.已知函數(shù)f(x)=ax2-blnx在點(diǎn)A(1,f(1))處的切線方程為y=1;
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 11:0:2組卷:565引用:3難度:0.5