如圖所示拋物線與x軸交于O,A兩點,OA=6,其頂點與x軸的距離是6.
(1)求拋物線的解析式;
(2)設頂點為M,將直線MA繞點A順時針旋轉90°,得到的直線與拋物線交于點N,求點N的坐標;
(3)點P在拋物線上,過點P的直線y=x+m與拋物線的對稱軸交于點Q.當△POQ與△PAQ的面積之比為1:3時,求m的值.

【答案】(1)y=(x-3)2-6;
(2)N的坐標為(-,);
(3)m=-或m=3,
2
3
(2)N的坐標為(-
3
4
27
8
(3)m=-
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:196引用:3難度:0.4
相似題
-
1.已知二次函數(shù)y=x2-mx+m-2:
(1)求證:不論m為任何實數(shù),此二次函數(shù)的圖象與x軸都有兩個交點;
(2)當二次函數(shù)的圖象經(jīng)過點(3,6)時,確定m的值,并寫出此二次函數(shù)與坐標軸的交點坐標.發(fā)布:2025/6/24 17:0:1組卷:1313引用:11難度:0.7 -
2.二次函數(shù)y=2x2-2x+m(0<m<
),如果當x=a時,y<0,那么當x=a-1時,函數(shù)值y的取值范圍為( ?。?/h2>12發(fā)布:2025/6/25 5:30:3組卷:143引用:2難度:0.7 -
3.拋物線y=x2-2x+1與坐標軸交點個數(shù)為( ?。?/h2>
發(fā)布:2025/6/24 17:30:1組卷:1079引用:22難度:0.9