設函數y=ax2+bx+c.
(1)若a>0,b=-2a-2,c=3,求不等式y(tǒng)≤-1的解集;
(2)若c=2a=2,當1≤x≤5時,不等式y≥32bx恒成立,求實數b的取值范圍.
y
≥
3
2
bx
【答案】(1)答案見解析;
(2).
(2)
{
b
|
b
≤
4
2
}
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/12 7:0:8組卷:6引用:2難度:0.5
相似題
-
1.設函數f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:547難度:0.5 -
2.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數,若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:14難度:0.5 -
3.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:64引用:3難度:0.6