CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE ==CF;EF ==|BE-AF|(填“>”、“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋€關(guān)于∠α與∠BCA關(guān)系的條件 ∠α+∠BCA=180°∠α+∠BCA=180°,使①中的結(jié)論仍然成立,并證明兩個結(jié)論成立.
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鯡F,BE,AF三條線段數(shù)量關(guān)系的合理猜想,并證明.

【考點】三角形綜合題.
【答案】=;=;∠α+∠BCA=180°
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/28 15:0:2組卷:165引用:1難度:0.5
相似題
-
1.在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),且
,P點為y軸上一動點.(b-2)2+|a-6|+c-6=0
(1)求點B、M的坐標(biāo);
(2)當(dāng)P點在線段OM上運(yùn)動時,試問是否存在一個點P使S△PAB=13,若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
(3)不論點P點運(yùn)動到直線OM上的任何位置(不包括點O,M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請寫出來并請選擇其中一種結(jié)論進(jìn)行證明;如果沒有,請說明理由.發(fā)布:2025/6/5 18:0:1組卷:35引用:3難度:0.1 -
2.在△ABC中,∠BAC=90°,
,D為BC上任意一點,E為AC上任意一點.AB=AC=22
(1)如圖1,連接DE,若∠CDE=60°,AC=4AE,求DE的長.
(2)如圖2,若點D為BC中點,連接AD,點F為AD上任意一點,連接EF并延長交AB于點M,將線段EF繞點E順時針旋轉(zhuǎn)90°得到線段EG,連接AG.點N在AC上,∠AGN=∠AEG且,求證:GN=MF.AM+AF=2AE
(3)如圖3,點D為BC中點,連接AD,點F為AD的中點,連接EF、BF,將線段EF繞點E順時針旋轉(zhuǎn)90°得到線段EG,連接AG,H為直線AB上一動點,連接FH,將△BFH沿FH翻折至△ABC所在平面內(nèi),得到△B′FH,連接B′G,直接寫出線段B′G的長度的最大值.發(fā)布:2025/6/5 18:0:1組卷:415引用:2難度:0.1 -
3.(1)問題發(fā)現(xiàn):如圖①,△ABC和△EDC都是等邊三角形,點B、D、E在同一條直線上,連接AE.
①∠AEC的度數(shù)為 ;
②線段AE、BD之間的數(shù)量關(guān)系為 ;
(2)拓展探究:如圖②,△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°,點B、D、E在同一條直線上,CM為△EDC中DE邊上的高,連接AE,試求∠AEB的度數(shù)及判斷線段CM、AE、BM之間的數(shù)量關(guān)系,并說明理由;
(3)解決問題:如圖③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,點B、D,E在同一條直線上,請直接寫出∠EAB+∠ECB的度數(shù).發(fā)布:2025/6/5 19:30:2組卷:3697引用:33難度:0.3