勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小明以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖①或圖②擺放時(shí),都可以用“面積法”來證明,下面是小明利用圖①證明勾股定理的過程:將兩個(gè)全等的直角三角形按圖①所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連接DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b-a,FC=DE=b,
∵S四邊形ADCB=S△ACD+S△ABC=12b2+12ab,
S四邊形ADCB=S△ADB+S△DCB=12c2+12a(b-a)
∴12b2+12ab=12c2+12a(b-a)
∴a2+b2=c2.
請(qǐng)參照上述證法,利用圖②完成下面的證明:
將兩個(gè)全等的直角三角形按圖②所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
【考點(diǎn)】勾股定理的證明;直角三角形全等的判定.
【答案】見解答.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/20 7:0:2組卷:227引用:1難度:0.7
相似題
-
1.如圖,“趙爽弦圖”由4個(gè)全等的直角三角形所圍成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若圖中大正方形的面積為35,小正方形的面積為3,則(a+b)2的值為 .
發(fā)布:2025/5/24 13:0:1組卷:69引用:1難度:0.6 -
2.如圖,我國(guó)古代的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形密鋪構(gòu)成的大正方形,若小正方形的面積為1,大正方形的面積為13,則直角三角形較短的直角邊a與較長(zhǎng)的直角邊b的比
的值是 .ab發(fā)布:2025/5/24 6:0:2組卷:481引用:5難度:0.6 -
3.公元三世紀(jì),我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”如圖所示,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形.如果大正方形的面積是125,小正方形面積是25,則tanθ的值為( )
發(fā)布:2025/5/23 22:0:2組卷:95引用:2難度:0.6