如圖,拋物線y=ax2+x+c經(jīng)過坐標軸上A、B、C三點,直線y=-x+4過點B和點C.
(1)求拋物線的解析式;
(2)E是直線BC上方拋物線上一動點,連接BE、CE,求△BCE面積的最大值及此時點E的坐標;
(3)Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、B、C為頂點的四邊形是平行四邊形?若存在,請求出所有滿足條件的點P坐標;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+x+4;
(2)△BCE的面積有最大值4,E(2,4);
(3)存在,(3,)或(5,-)或(-3,-).
1
2
(2)△BCE的面積有最大值4,E(2,4);
(3)存在,(3,
5
2
7
2
7
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/7 8:0:9組卷:2090引用:7難度:0.5
相似題
-
1.如圖,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經(jīng)過點B、C的,與x軸另一交點為A,頂點為D.
(1)求拋物線的解析式;
(2)在拋物線對稱軸是否存在一點E,使得△BCE是等腰三角形,若存在,求出E的點坐標,若不存在,請說明理由;
(3)在拋物線的對稱軸上是否存在一點P,使得∠APB=∠OCB?若存在,求出點P的坐標,若不存在,請說明理由.發(fā)布:2025/5/24 15:0:1組卷:156引用:2難度:0.3 -
2.在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx-2交x軸于點A、B(點A在點B的左側(cè)),交y軸于點C,若OB=OC=2OA.
(1)如圖1,求拋物線解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接BP,平面內(nèi)存在點D,連接CD,使CD∥BP,CD=BP,連接CP、DB,設(shè)P的橫坐標為t,點D的橫坐標為d,求d與t的函數(shù)關(guān)系式;
(3)如圖3,在(2)的條件下,延長BD交直線AC于點E,連接EO,作DF∥y軸交EO的延長線于點F,交x軸于點G,點Q為拋物線第二象限上一點,連接FA、FQ、BQ,∠AEO=∠BEO,∠QFA=2∠QBA,求線段FQ的長.發(fā)布:2025/5/24 15:0:1組卷:233引用:1難度:0.1 -
3.如圖,直線y=-
x+12圖象交x軸于點A,交y軸于點C,點A,點C在拋物線y=ax2+bx+b-a的圖象上.P點是線段OA上的一個動點,過點P作x軸的垂線l交拋物線和直線AC于點M,N兩點.72
(1)求拋物線的函數(shù)關(guān)系式;
(2)當△MCN恰好是以MN為斜邊的直角三角形時,求此時點M的坐標;
(3)x軸上方的對稱軸上有一動點E,平面上是否存在一點F,使以A、C、E、F為頂點的四邊形是菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由;
(4)在(2)的條件下,將線段PA繞著點P逆時針旋轉(zhuǎn)一定的角度α(0°<α<90°),得到線段PQ.試探究線段PM上是否存在一個定點D(不與P、M重合),無論PQ如何旋轉(zhuǎn),的值始終保持不變.若存在,請求出點D的坐標;若不存在,請說明理由.DQMQ發(fā)布:2025/5/24 15:0:1組卷:101引用:1難度:0.2