數學課上有如下問題:
如圖,已知點C是線段AB上一點,分別以AC和BC為斜邊在同側作等腰直角△ACD和等腰直角△BCE,點P是線段AB上一個動點(不與A、B、C重合),連接PD,作∠DPQ=90°,PQ交直線CE于點Q.
(1)如圖1,點P在線段AC上,求證:PD=PQ;
(2)如圖2,點P在線段BD上,請根據題意補全圖2,猜想線段PD、PQ的數量關系并證明你的結論.
小明同學在解決問題(1)時,提出了這樣的想法:如圖3,先過點P作PF⊥AC交CD于點F,再證明△PDF≌△PQC……
請你結合小明同學的想法,完成問題(1)(2)的解答過程.

【考點】三角形綜合題.
【答案】(1)證明見解析;
(2)PD=PQ,證明見解析.
(2)PD=PQ,證明見解析.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:30引用:1難度:0.4
相似題
-
1.在平面直角坐標系中,點A、B、C的坐標分別為(m,0),(2,-4),(n,0),且m,n滿足方程(m-2)xn-4+
=0為二元一次方程.ym2-3
(1)求A、C的坐標;
(2)若點D為y軸正半軸上的一個動點.
①如圖1,已知∠DAO=∠ACB,∠ADO與∠ACB的角平分線交于點P,求∠P的度數;
②如圖2,連接BD,交x軸于點E.若S△ADE≤S△BCE成立.設動點D坐標為(0,a),求a的取值范圍.發(fā)布:2025/6/8 0:30:1組卷:83引用:1難度:0.1 -
2.在平面直角坐標系中,A(a,0),C(b,2),且滿足(a+b)2+|a-b+4|=0,過C作CB⊥x軸于B.
(1)如圖1,求△ABC的面積.
(2)如圖2,若過B作BD∥AC交y軸于D,在△ABC內有一點E,連接AE、DE,若∠CAE+∠BDE=∠EAO+∠EDO,求∠AED的度數.
(3)如圖3,在(2)的條件下,DE與x軸交于點M,AC與y軸交于點F,作△AME的角平分線MP,在PE上有一點Q,連接QM,∠EAM+2∠PMQ=45°,當AE=mAM,FO=2QM時,求點E的縱坐標(用含m的代數式表示).發(fā)布:2025/6/7 23:0:2組卷:189引用:2難度:0.2 -
3.已知線段AB⊥l于點B,點D在直線l上,分別以AB、AD為邊作等邊三角形ABC和等邊三角形ADE,直線CE交直線l于點F.
(1)當點F在線段BD上時,如圖①,直接寫出DF,CE,CF之間的關系 .
(2)當點F在線段BD的延長線上時,如圖②,當點F在線段DB的延長線上時,如圖③,請分別寫出線段DF、CE、CF之間的數量關系,在圖②、圖③中選一個進行證明.
(3)在(1)、(2)的條件下,若BD=2BF,EF=6,請直接寫出CF的值.發(fā)布:2025/6/8 2:0:5組卷:424引用:2難度:0.1