古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把一個三角形數(shù)記為a1,第二個三角形數(shù)記為a2,…第n個三角形數(shù)記為an,計算a2-a1,a3-a2,a4-a3,…,此推算,a100-a99=( ?。?/h1>
【答案】D
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:318引用:5難度:0.6
相似題
-
1.觀察:
+11×2=(1-12×3)+(12-12)=1-13=1323
計算:+11×2+12×3+…+13×4.12007×2008發(fā)布:2025/6/23 15:30:2組卷:70引用:4難度:0.7 -
2.我們知道:
=1-11×2,12=12×3,12-13=13×4-13,…,那么14=15×6=1n(n+1)
利用以上規(guī)律計算:+11×2+12×3+…+13×4.199×100發(fā)布:2025/6/23 15:0:2組卷:34引用:1難度:0.5 -
3.計算:(-1-1)(1-2)(2-3)(3-4)…(2010-2011)=
發(fā)布:2025/6/23 18:0:2組卷:79引用:3難度:0.7