試卷征集
加入會員
操作視頻

【發(fā)現(xiàn)問題】

“速疊杯”是深受學生喜愛的一項運動,杯子的疊放方式如圖1所示:每層都是杯口朝下排成一行,自下向上逐層遞減一個杯子,直至頂層只有一個杯子.愛思考的小麗發(fā)現(xiàn)疊放所需杯子的總數(shù)隨著第一層(最底層)杯子的個數(shù)變化而變化.
【提出問題】
疊放所需杯子的總數(shù)y與第一層杯子的個數(shù)x之間有怎樣的函數(shù)關系?
【分析問題】
小麗結合實際操作和計算得到下表所示的數(shù)據(jù):
第一層杯子的個數(shù)x 1 2 3 4 5
杯子的總數(shù)y 1 3 6 10 15
然后在平面直角坐標系中,描出上面表格中各對數(shù)值所對應的點,得到圖2,小麗根據(jù)圖2中點的分布情況,猜想其圖象是二次函數(shù)圖象的一部分;為了驗證自己的猜想,小麗從“形”的角度出發(fā),將要計算總數(shù)的杯子用黑色圓表示(如圖3),再借助“補”的思想,補充相同數(shù)量的白色圓,使每層圓的數(shù)量相同,進而求出y與x的關系式.
【解決問題】
(1)直接寫出y與x的關系式;
(2)現(xiàn)有36個杯子,按【發(fā)現(xiàn)問題】中的方式疊放,求第一層杯子的個數(shù);
(3)杯子的側面展開圖如圖4所示,ND,MA分別為上、下底面圓的半徑,
?
AB
所對的圓心角∠AOB=60°,OA=24cm,OD=15cm.將這樣足夠數(shù)量的杯子按【發(fā)現(xiàn)問題】中的方式疊放,但受桌面長度限制,第一層擺放杯子的總長度不超過80cm,求杯子疊放達到的最大高度和此時杯子的總數(shù).(提示:杯子下底面圓周長與AB的長度相等)

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/25 0:0:1組卷:934引用:4難度:0.4
相似題
  • 1.如圖,已知直線y=kx-6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.
    (1)求拋物線的解析式;
    (2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
    (3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.

    發(fā)布:2025/6/25 8:30:1組卷:6973引用:21難度:0.1
  • 2.給定一個函數(shù),如果這個函數(shù)的圖象上存在一個點,它的橫、縱坐標相等,那么這個點叫做該函數(shù)的不變點.
    (1)一次函數(shù)y=3x-2的不變點的坐標為

    (2)二次函數(shù)y=x2-3x+1的兩個不變點分別為點P、Q(P在Q的左側),將點Q繞點P順時針旋轉90°得到點R,求點R的坐標.
    (3)已知二次函數(shù)y=ax2+bx-3的兩個不變點的坐標為A(-1,-1)、B(3,3).
    ①求a、b的值.
    ②如圖,設拋物線y=ax2+bx-3與線段AB圍成的封閉圖形記作M.點C為一次函數(shù)y=-
    1
    3
    x+m的不變點,以線段AC為邊向下作正方形ACDE.當D、E兩點中只有一個點在封閉圖形M的內部(不包含邊界)時,求出m的取值范圍.

    發(fā)布:2025/6/25 7:30:2組卷:348引用:2難度:0.1
  • 3.如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是直線x=-1.
    (1)求拋物線對應的函數(shù)關系式;
    (2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
    ①當t為何值時,四邊形OMPQ為矩形;
    ②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

    發(fā)布:2025/6/25 6:0:1組卷:1080引用:59難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正