如圖,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-3,0),B(2,0),與y軸正半軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)已知點(diǎn)D(-2,n)在拋物線上,點(diǎn)P在線段OA上,PG⊥x軸交直線OD于G,延長(zhǎng)PG到點(diǎn)E,使EG=PG,以PE為斜邊在PE右側(cè)作等腰直角△PEF.當(dāng)點(diǎn)F正好落在拋物線上時(shí),求P點(diǎn)的坐標(biāo);
(3)直線y=12x+m與拋物線交于點(diǎn)M,N,是否存在實(shí)數(shù)m的值,使得∠MON=90°?若存在,求出m的值;若不存在,請(qǐng)說明理由.

1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2-x+6;
(2)點(diǎn)P的坐標(biāo)為(,0);
(3)存在m的值,使得∠MON=90°,其值為m=-3或m=.
(2)點(diǎn)P的坐標(biāo)為(
3
-
33
2
(3)存在m的值,使得∠MON=90°,其值為m=-3或m=
5
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:113引用:1難度:0.3
相似題
-
1.如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn)(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.發(fā)布:2025/5/28 0:30:1組卷:996引用:77難度:0.1 -
2.已知拋物線y=x2+px+q上有一點(diǎn)M(x0,y0)位于x軸的下方.
(1)求證:拋物線必與x軸交于兩點(diǎn)A(x1,0)、B(x2,0),其中x1<x2;
(2)求證:x1<x0<x2;
(3)當(dāng)點(diǎn)M為(1,-1997)時(shí),求整數(shù)x1、x2.發(fā)布:2025/5/28 2:0:5組卷:254引用:1難度:0.5 -
3.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸相交于點(diǎn)C.連接AC、BC,A、C兩點(diǎn)的坐標(biāo)分別為A(-3,0)、C(0,
),且當(dāng)x=-4和x=2時(shí)二次函數(shù)的函數(shù)值y相等.3
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,二次函數(shù)圖象的對(duì)稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.發(fā)布:2025/5/28 1:30:2組卷:1106引用:26難度:0.1
相關(guān)試卷