已知函數(shù)y=φ(x)的圖象關于點P(a,b)成中心對稱圖形的充要條件是y=φ(a+x)-b是奇函數(shù).給定函數(shù)f(x)=x-6x+1.
(1)求函數(shù)f(x)圖象的對稱中心;
(2)判斷f(x)在區(qū)間(0,+∞)上的單調性(只寫出結論即可);
(3)已知函數(shù)g(x)的圖象關于點(1,1)對稱,且當x∈[0,1]時,g(x)=x2-mx+m.若對任意x1∈[0,2],總存在x2∈[1,5],使得g(x1)=f(x2),求實數(shù)m的取值范圍.
6
x
+
1
【考點】函數(shù)的奇偶性.
【答案】(1)f(x)的對稱中心為(-1,-1);
(2)函數(shù)f(x)在(0,+∞)單調遞增;
(3)實數(shù)m的取值范圍是[-2,4].
(2)函數(shù)f(x)在(0,+∞)單調遞增;
(3)實數(shù)m的取值范圍是[-2,4].
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/9 4:0:1組卷:86引用:4難度:0.6
相似題
-
1.已知f(x)是定義在R上的奇函數(shù),f(x)的圖象關于x=1對稱,當x∈(0,1]時,f(x)=ex-1,則下列判斷正確的是( )
發(fā)布:2024/12/29 2:0:1組卷:267引用:5難度:0.5 -
2.設函數(shù)
為奇函數(shù),則實數(shù)a的值為( ?。?/h2>f(x)=(x+1)(x+a)x發(fā)布:2024/12/29 13:0:1組卷:827引用:4難度:0.5 -
3.定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),則f(2022)=( ?。?/h2>
發(fā)布:2025/1/4 5:0:3組卷:186引用:1難度:0.7