閱讀下列材料:
在學(xué)習(xí)“可化為一元一次方程的分式方程及其解法”的課上,老師提出一個(gè)問題:若關(guān)于x的分式方程ax-4=7的解為正數(shù),求a的取值范圍.
經(jīng)過獨(dú)立思考與分析后,小杰和小哲開始交流解題思路.
小杰說,解這個(gè)關(guān)于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>-4,問題解決.
小哲說,你考慮得不全面,還必須保證x≠4,即a+4≠4才行.
參考上述對問題的討論,解決下面的問題.
(1)請回答:小哲小哲的說法是正確的,正確的理由是 解分式方程要保證分式有意義解分式方程要保證分式有意義,a的取值范圍應(yīng)為 a>-4且a≠0a>-4且a≠0.
(2)若關(guān)于x的方程mx-3-x3-x=2的解為非負(fù)數(shù),求m的取值范圍.
(3)若關(guān)于x的方程mx-1x-2+12-x=2有整數(shù)解,求整數(shù)m的值.
a
x
-
4
=
7
m
x
-
3
-
x
3
-
x
=
2
mx
-
1
x
-
2
+
1
2
-
x
=
2
【答案】小哲;解分式方程要保證分式有意義;a>-4且a≠0
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:192引用:1難度:0.6