閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax-3a2,就不能直接運用公式了.
此時,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添一個適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”,請用“配方法”解決以下問題.
(1)利用“配方法”分解因式:a2-4a-12;
(2)19世紀的法國數(shù)學家蘇菲熱門解決了“把x4+4分解因式”這個問題:x4+4=x4+4x2+4-4x2=(x2+2)2-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).請你把x4+64y4因式分解;
(3)若2m2-4mn+3n2-8n+16=0,求m和n的值.
【答案】(1)(x+2)(x-6);
(2)(x2+4xy+8y2)(x2-4xy+8y2);
(3)m=4,n=4.
(2)(x2+4xy+8y2)(x2-4xy+8y2);
(3)m=4,n=4.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/6 11:30:1組卷:923引用:3難度:0.6
相似題
-
1.在分解因式時x2+ax+b時,甲看錯了a的值,分解的結(jié)果是(x+1)(x+9);乙看錯了b的值,分解的結(jié)果是(x-2)(x-4).那么x2+ax+b分解因式正確的結(jié)果是多少?為什么?
發(fā)布:2025/6/7 16:0:2組卷:242引用:2難度:0.7 -
2.提出問題:你能把多項式x2+5x+6因式分解嗎?
探究問題:如圖1所示,設(shè)a,b為常數(shù),由面積相等可得:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,將該式從右到左使用,就可以對形如x2+(a+b)x+ab的多項式進行因式分解即x2+(a+b)x+ab=(x+a)(x+b).觀察多項式x2+(a+b)x+ab的特征是二次項系數(shù)為1,常數(shù)項為兩數(shù)之積,一次項為兩數(shù)之和.
解決問題:x2+5x+6=x2+(2+3)x+2×3=(x+3)(x+2)
運用結(jié)論:
(1)基礎(chǔ)運用:把多項式x2-5x-24進行因式分解;
(2)知識遷移:對于多項式4x2-4x-15進行因式分解還可以這樣思考:
將二次項4x2分解成圖2中的兩個2x的積,再將常數(shù)項-15分解成-5與3的乘積,圖中的對角線上的乘積的和為-4x,就是4x2-4x-15的一次項,所以有4x2-4x-15=(2x-5)(2x+3).這種分解因式的方法叫做“十字相乘法”.請用十字相乘法進行因式分解:3x2-19x-14.發(fā)布:2025/6/7 21:30:1組卷:115引用:1難度:0.7 -
3.(1)若多項式x2-mx-8可分解為(x+2)(x+n),求m?n的值;
(2)已知(a+b)2=17,(a-b)2=5,求a2+b2,ab的值;
(3)在(2)的條件下求a4-a2b2+b4的值.發(fā)布:2025/6/7 10:30:1組卷:70引用:2難度:0.8
相關(guān)試卷