如圖,在平面直角坐標系中,拋物線y=-12x2+bx+32與x軸正半軸交于點A,且點A的坐標為(3,0),過點A作垂直于x軸的直線l.P是該拋物線上的任意一點,其橫坐標為m,過點P作PQ⊥l于點Q,M是直線l上的一點,其縱坐標為-m+32,以PQ、QM為邊作矩形PQMN.

(1)求b的值.
(2)當點Q與點M重合時,求m的值.
(3)當矩形PQMN是正方形,且拋物線的頂點在該正方形內部時,求m的值.
(4)當拋物線在矩形PQMN內的部分所對應的函數(shù)值y隨x的增大而減小時.直接寫出m的取值范圍.
1
2
3
2
3
2
【考點】二次函數(shù)綜合題.
【答案】(1)b=1;
(2)m=0或4;
(3)m=1-;
(4)0<m<3或m>4.
(2)m=0或4;
(3)m=1-
7
(4)0<m<3或m>4.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:321引用:3難度:0.4
相似題
-
1.如圖:直線y=kx+m交y軸于點D,交x軸于點C(5,0),交拋物線y=ax2+bx+8于點A(-3,4),點E,點B(2,4)在拋物線上,連接AB,BC,BD.
(1)求拋物線的解析式;
(2)點Q從點A出發(fā),以每秒2個單位長度的速度沿折線A-B-C做勻速運動,當點Q與點C重合時停止運動,設運動的時間為t秒,△QBD的面積為S,求S與t的函數(shù)關系式;
(3)在(2)的條件下,若∠DQB+∠BCO=90°,請直接寫出此時t的值.發(fā)布:2025/5/25 7:0:2組卷:168引用:1難度:0.4 -
2.如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(ac≠0)與x軸交于點A和點B(點A在點B的左側),與y軸交于點C.若線段OA、OB、OC的長滿足OC2=OA?OB,則這樣的拋物線稱為“黃金”拋物線.如圖,拋物線y=ax2+bx+2(a≠0)為“黃金”拋物線,其與x軸交點為A,B(其中B在A的右側),與y軸交于點C,且OA=4OB.
(1)求拋物線的解析式;
(2)若P為AC上方拋物線上的動點,過點P作PD⊥AC,垂足為D.
①求PD的最大值;
②連接PC,當△PCD與△ACO相似時,求點P的坐標.發(fā)布:2025/5/25 7:0:2組卷:1125引用:11難度:0.1 -
3.如圖,拋物線y=ax2+bx+2經過A(-1,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式及直線BC解析式;
(2)D是直線BC上方拋物線上一動點,連接AD交線段BC于點E,當的值最大時,求出此時D坐標及最大值;DEAE
(3)將直線BC繞點B順時針旋轉45°,得到BF,與拋物線交于另一點F,直接寫出F坐標及BF的長.發(fā)布:2025/5/25 7:0:2組卷:171引用:2難度:0.1