已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A(a,b)滿足a-4+|b-2|=0,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.
(1)則a=44,b=22;點(diǎn)C坐標(biāo)為(0,-2)(0,-2);
(2)如圖1,點(diǎn)D(m,n)在線段BC上,求m、n滿足的關(guān)系式;
(3)如圖2,E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠BOG=∠AOB,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過(guò)程中,∠OFC+∠FCG∠OEC的值是否會(huì)發(fā)生變化?若變化請(qǐng)說(shuō)明理由,若不變,請(qǐng)求出其值.
a
-
4
∠
OFC
+
∠
FCG
∠
OEC
【考點(diǎn)】幾何變換綜合題.
【答案】4;2;(0,-2)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1672引用:8難度:0.1
相似題
-
1.綜合與實(shí)踐:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的折疊”為主題開(kāi)展數(shù)學(xué)活動(dòng).
在矩形ABCD中,E為AB邊上一點(diǎn),F(xiàn)為AD邊上一點(diǎn),連接CE、CF,分別將△BCE和△CDF沿CE、CF翻折,點(diǎn)D、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)G、H,且C、H、G三點(diǎn)共線.
(1)如圖1,若F為AD邊的中點(diǎn),AB=BC=6,點(diǎn)G與點(diǎn)H重合,則∠ECF=°,BE=;
(2)如圖2,若F為AD的中點(diǎn),CG平分∠ECF,,BC=2,求∠ECF的度數(shù)及BE的長(zhǎng).AB=2+1
(3)AB=5,AD=3,若F為AD的三等分點(diǎn),請(qǐng)直接寫(xiě)出BE的長(zhǎng).發(fā)布:2025/5/22 5:30:2組卷:902引用:5難度:0.4 -
2.問(wèn)題背景:如圖1,在等腰△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,在△AEF中,∠AEF=90°,
,連接BF,M是BF中點(diǎn),連接EM和DM,在△AEF繞點(diǎn)A旋轉(zhuǎn)過(guò)程中,線段EM和DM之間存在怎樣的數(shù)量關(guān)系?∠EAF=12∠BAC
觀察發(fā)現(xiàn):
(1)為了探究線段EM和DM之間的數(shù)量關(guān)系,可先將圖形位置特殊化,將△AEF繞點(diǎn)A旋轉(zhuǎn),使AE與AB重合,如圖2,易知EM和DM之間的數(shù)量關(guān)系為 ;
操作證明:
(2)繼續(xù)將△AEF繞點(diǎn)A旋轉(zhuǎn),使AE與AD重合時(shí),如圖3,(1)中線段EM和DM之間的數(shù)量關(guān)系仍然成立,請(qǐng)加以證明.
問(wèn)題解決:
(3)根據(jù)上述探究的經(jīng)驗(yàn),我們回到一般情況,如圖1,在其他條件不變的情況下,上述的結(jié)論還成立嗎?請(qǐng)說(shuō)明你的理由.發(fā)布:2025/5/22 6:30:1組卷:219引用:2難度:0.1 -
3.如圖,在△ABC中,AB=AC,∠BAC=90°,D為線段BC上一點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,作射線CE.
(1)求證:△BAD≌△CAE,并求∠BCE的度數(shù);
(2)若F為DE中點(diǎn),連接AF,連接CF并延長(zhǎng),交射線BA于點(diǎn)G.當(dāng)BD=2,DC=1時(shí),
①求AF的長(zhǎng);
②直接寫(xiě)出CG的長(zhǎng).發(fā)布:2025/5/22 4:30:1組卷:516引用:4難度:0.5