如圖,在平面直角坐標系xOy中,拋物線y=ax2+43x+c與x軸交于點A(-3,0),與y軸交于點C(0,-2).

(1)求拋物線的解析式;
(2)如圖1,連接AC,點D為線段AC下方拋物線上一動點,過點D作DE∥y軸交線段AC于E點,連接EO,記△ADC的面積為S1,△AEO的面積為S2,求S1-S2的最大值及此時點D的坐標;
(3)如圖2,在(2)問的條件下,將拋物線沿射線CB方向平移352個單位長度得到新拋物線,動點M在原拋物線的對稱軸上,點N為新拋物線上一點,直接寫出所有使得以點A、D、M、N為頂點的四邊形是平行四邊形的點N的坐標,并把求其中一個點N的坐標的過程寫出來.
4
3
3
5
2
【考點】二次函數(shù)綜合題.
【答案】(1)拋物線的表達式為:y=x2+x-2;
(2)S1-S2的最大值為1,點D(-2,-2);
(3)點N的坐標為(-3,)或(1,).
2
3
4
3
(2)S1-S2的最大值為1,點D(-2,-2);
(3)點N的坐標為(-3,
17
2
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:299引用:2難度:0.4
相似題
-
1.如圖,已知二次函數(shù)y=ax2+bx的圖象經(jīng)過點A(4,0),B(1,3),點B關(guān)于拋物線對稱軸的對稱點為點C,過點B作直線BM⊥x軸,垂足為點M.
(1)求二次函數(shù)的表達式并直接寫出點C的坐標;
(2)點P是直線BM右側(cè)拋物線上一點,若△ABP的面積是6.
①直接寫出點P到直線AB的距離;
②求點P的坐標;
(3)點G在x軸上,點H在直線BM上,當(dāng)以C,G,H為頂點的三角形是等腰直角三角形時,此時△CGH的面積是 .發(fā)布:2025/5/26 4:0:1組卷:54引用:1難度:0.3 -
2.拋物線y=ax2-4ax-12a(a≠0)與x軸交于A、B兩點(點A在點B的左側(cè)),頂點為C.以點C為旋轉(zhuǎn)中心,將點B順時針旋轉(zhuǎn)90°得到點D.
(1)直接寫出點C的坐標為 .(用含a的式子表示)
(2)試說明點A為位置不變的定點,并求出點A的坐標.
(3)當(dāng)∠ABC=30°時,求點D的坐標.
(4)當(dāng)點D在第三象限時,直接寫出a的取值范圍.發(fā)布:2025/5/26 4:0:1組卷:147引用:1難度:0.1 -
3.已知拋物線y=ax2-(3a-1)x-2(a為常數(shù)且a≠0)與y軸交于點A.
(1)點A的坐標為 ;對稱軸為 (用含a的代數(shù)式表示);
(2)無論a取何值,拋物線都過定點B(與點A不重合),則點B的坐標為 ;
(3)若a<0,且自變量x滿足-1≤x≤3時,圖象最高點的縱坐標為2,求拋物線的表達式;
(4)將點A與點B之間的函數(shù)圖象記作圖象M(包含點A、B),若將M在直線y=-2下方的部分保持不變,上方的部分沿直線y=-2進行翻折,可以得到新的函數(shù)圖象M1,若圖象M1上僅存在兩個點到直線y=-6的距離為2,求a的值.發(fā)布:2025/5/26 4:30:1組卷:504引用:3難度:0.3