在平面直角坐標系中,拋物線y=x2+bx+c(b、c是常數(shù))經(jīng)過點(0,-3),(2,5).點A在拋物線上,且點A的橫坐標為m.
(1)求該拋物線對應(yīng)的函數(shù)表達式.
(2)當(dāng)點A在x軸上方時,求m的取值范圍.
(3)若此拋物線在點A左側(cè)部分(包括點A)的最低點的縱坐標為1-2m,求m的值.
(4)當(dāng)m≠0時,以點A為中心,構(gòu)造正方形PQMN,PQ=2|m|,且PQ⊥x軸.當(dāng)拋物線與正方形PQMN的邊只有2個交點,且交點的縱坐標之差為34時,直接寫出m的值.
3
4
【考點】拋物線與x軸的交點;待定系數(shù)法求二次函數(shù)解析式;二次函數(shù)的性質(zhì);二次函數(shù)的最值;二次函數(shù)圖象上點的坐標特征;正方形的性質(zhì).
【答案】(1)y=x2+2x-3;
(2)m>1或m<-3;
(3)或-2-2;
(4)m=-或m=-或m=.
(2)m>1或m<-3;
(3)
5
2
2
(4)m=-
3
2
1
2
3
8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:292引用:1難度:0.3
相似題
-
1.已知:拋物線y=x2-mx-3與x軸交于A、B兩點,且AB=4,則m的值為( )
發(fā)布:2025/5/25 12:0:2組卷:518引用:2難度:0.6 -
2.若拋物線y=ax2+c與x軸交于點A(m,0)、B(n,0),與y軸交于點C(0,c),則稱△ABC為“拋物三角線”.特別地,當(dāng)mnc<0時,稱△ABC為“正拋物三角形”;當(dāng)mnc>0時,稱△ABC為“倒拋物三角形”.那么,當(dāng)△ABC為“倒拋物三角形”時,a、c應(yīng)分別滿足條件 .
發(fā)布:2025/5/25 8:0:2組卷:543引用:6難度:0.5 -
3.關(guān)于函數(shù)y=(mx+m-1)(x-1).下列說法正確的是( ?。?/h2>
發(fā)布:2025/5/25 10:30:1組卷:1104引用:6難度:0.3