綜合與實踐課上,老師讓同學們以“矩形的折疊”為主題開展數(shù)學活動.
(1)操作判斷:
操作一:如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展平;
操作二:如圖1,在AD上選一點P,沿BP折疊,使點A落在矩形內(nèi)部點M處,把紙片展平,連接PM,BM.根據(jù)以上操作,當點M在EF上時,寫出圖1中一個30°的角:∠ABP或∠PBM或∠MBC∠ABP或∠PBM或∠MBC(寫一個即可).
(2)遷移探究:
小華將矩形紙片換成正方形紙片,繼續(xù)探究,過程如下:
將正方形紙片ABCD按照(1)中的方式操作,并延長PM交CD于點Q,連接BQ.
①如圖2,當點M在EF上時,∠MBQ=1515°,∠CBQ=1515°;
②如圖3,改變點P在AD上的位置(點P不與點A,D重合),判斷∠MBQ與∠CBQ的數(shù)量關系,并說明理由.
(3)拓展應用:
在(2)的探究中,已知正方形紙片ABCD的邊長為10cm,當FQ=3cm時,直接寫出AP的長.

【考點】四邊形綜合題.
【答案】∠ABP或∠PBM或∠MBC;15;15
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:1001引用:7難度:0.4
相似題
-
1.我們定義:如圖1,在△ABC中,把AB繞點A順時針旋轉α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數(shù)量關系為AD=BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關系,并給予證明.
拓展應用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.3發(fā)布:2025/5/22 18:30:2組卷:3823引用:11難度:0.1 -
2.在數(shù)學興趣社團課上,同學們對平行四邊形進行了深入探究.
探究一:如圖1,在矩形ABCD中,AC2=AB2+BC2,BD2=AC2=CD2+AD2,則AC2+BD2=AB2+BC2+CD2+AD2,由此得出結論:矩形兩條對角線的平方和等于其四邊的平方和.
探究二:對于一般的平行四邊形,是否仍有上面的結論呢?
證明:如圖2,在?ABCD中,過A作AM⊥BC于M,過D作DN⊥BC,交BC延長線于N.設AB=a,BC=b,BM=x,AM=y,
∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∴∠ABC=∠DCN,
又∵∠AMB=∠DNC=90°,∴△ABM≌△DCN.
∴CN=BM=x,DN=AM=y.
請你接著完成上面的證明過程.
結論應用:若一平行四邊形的周長為20,兩條對角線長分別為8,2,求該平行四邊形的四條邊長.10發(fā)布:2025/5/22 18:30:2組卷:223引用:1難度:0.5 -
3.問題情?境
如圖,在四邊形ABCD中,連接BD,∠ABD=∠BCD=90°,∠ADB=30°,∠BDC=45°,AB=2,點E為AD的中點,連接CE.以點D為中心,順時針旋轉△DEC,得到△DGF,點E,C的對應點分別為點G,F(xiàn).
問題探究
(1)如圖①,則CE的長為 ;
(2)如圖②,在△DFG旋轉過程中,當B,F(xiàn),G三點共線時,求△ABF的面積;
(3)如圖③,在△DFG旋轉過程中,連接AF,AG,直接寫出△AFG面積的最大值.發(fā)布:2025/5/22 18:30:2組卷:315引用:1難度:0.1