如圖,二次函數(shù)y=ax2-6ax-16a(a≠0)的圖象與x軸交于點A,B(A在B左側(cè)),與y軸正半軸交于點C,點D在拋物線上,CD∥x軸,且OD=AB.
(1)求點A,B的坐標及a的值;
(2)點P為y軸右側(cè)拋物線上一點.
①如圖①,若OP平分∠COD,OP交CD于點E,求點P的坐標;
②如圖②,拋物線上一點F的橫坐標為2,直線CF交x軸于點G,過點P作直線CF的垂線,垂足為Q,若∠PCQ=∠BGC,求點Q的坐標.

【考點】二次函數(shù)綜合題.
【答案】(1)A(-2,0),B(8,0),a=-.
(2)①(4,12).
②(,)或(-,).
1
2
(2)①(4,12).
②(
6
5
52
5
26
9
20
9
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/16 7:30:1組卷:1429引用:4難度:0.1
相似題
-
1.如圖,拋物線y=ax2+
經(jīng)過△ABC的三個頂點,點A坐標為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.94
(1)求該拋物線的函數(shù)關(guān)系表達式;
(2)點F為線段AC上一動點,過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.發(fā)布:2025/6/16 19:30:1組卷:730引用:9難度:0.4 -
2.如圖,直線y1=-x+3與x軸于交于點B,與y軸交于點C.拋物線y2=-x2+bx+c經(jīng)過B、C兩點,并與x軸另一個交點為A.
(1)求拋物線y2的解析式;
(2)若點M在拋物線上,且S△MOC=4S△AOC,求點M的坐標;
(3)設(shè)點P是線段BC上一動點,過P作PQ⊥x軸,交拋物線于點Q,求線段PQ長度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3 -
3.如圖,已知拋物線y=ax2+bx+c過點A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點H是該拋物線第四象限的任意一點,求四邊形OCHA的最大面積;
(3)若點Q在x軸上,點G為該拋物線的頂點,且∠QGA=45°,求點Q的坐標.發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5