(1)閱讀理解
我國(guó)是最早了解勾股定理的國(guó)家之一,它被記載于我國(guó)古代的數(shù)學(xué)著作《周髀算經(jīng)》中.漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅如圖①所示的“弦圖”,后人稱之為“趙爽弦圖”.
根據(jù)“趙爽弦圖”寫出勾股定理和推理過程;
(2)問題解決
勾股定理的證明方法有很多,如圖②是古代的一種證明方法:過正方形ACDE的中心O,作FG⊥HP,將它分成4份,所分成的四部分和以BC為邊的正方形恰好能拼成以AB為邊的正方形.若AC=12,BC=5,求EF的值;
(3)拓展探究
如圖③,以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過程就可以得到“勾股樹”的部分圖形.設(shè)大正方形N的邊長(zhǎng)為定值n,小正方形A,B,C,D的邊長(zhǎng)分別為a,b,c,d.
已知∠1=∠2=∠3=α,當(dāng)角α(0°<α<90°)變化時(shí),探究b與c的關(guān)系式,并寫出該關(guān)系式及解答過程(b與c的關(guān)系式用含n的式子表示).

【考點(diǎn)】四邊形綜合題.
【答案】(1)a2+b2=c2(直角三角形兩條直角邊的平方和等于斜邊的平方),證明見解析;
(2)或;
(3)c+b=n,理由見解析.
(2)
17
2
7
2
(3)c+b=n,理由見解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1175引用:4難度:0.2
相似題
-
1.如圖,在菱形ABCD中,AB=10,sinB=
,點(diǎn)E從點(diǎn)B出發(fā)沿折線B-C-D向終點(diǎn)D運(yùn)動(dòng).過點(diǎn)E作點(diǎn)E所在的邊(BC或CD)的垂線,交菱形其它的邊于點(diǎn)F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點(diǎn)G在AC上.求證:FA=FG.
(2)若EF=FG,當(dāng)EF過AC中點(diǎn)時(shí),求AG的長(zhǎng).
(3)已知FG=8,設(shè)點(diǎn)E的運(yùn)動(dòng)路程為s.當(dāng)s滿足什么條件時(shí),以G,C,H為頂點(diǎn)的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:2069引用:3難度:0.1 -
2.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點(diǎn)A作對(duì)角線BD的平行線與邊CD的延長(zhǎng)線相交于點(diǎn)E.P為邊BD上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長(zhǎng)和面積;
(3)記△ABP的周長(zhǎng)和面積分別為C1和S1,△PDE的周長(zhǎng)和面積分別為C2和S2,在點(diǎn)P的運(yùn)動(dòng)過程中,試探究下列兩個(gè)式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請(qǐng)直接寫出這個(gè)定值;如果不是定值的,請(qǐng)直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:577引用:1難度:0.2 -
3.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.55
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),若△PEC是直角三角形,請(qǐng)直接寫出BP的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:255引用:1難度:0.1
相關(guān)試卷