在平面直角坐標(biāo)系xOy中,我們將橫縱坐標(biāo)都是整數(shù)的點叫作整點.以P為頂點向右上方作各邊垂直于坐標(biāo)軸的正方形,若對于直線l,此正方形內(nèi)部(不包括邊)有且僅有m個整點在直線l上,則稱該正方形為直線l關(guān)于點P的“m類正方形”.
(1)已知點P(1,1),A(5,1),B(5,5),C(1,5),則正方形PABC為直線y=x關(guān)于點P的 33類正方形;
(2)若點P(m,1)是整點,正方形PABC的邊長為4,正方形PABC為直線y=x關(guān)于點P的1類正方形,則點B的坐標(biāo)是 (3,5)或(7,5)(3,5)或(7,5);
(3)已知點P是整點且位于直線y=2x-1上.設(shè)直線y=2x-1關(guān)于點P的“3類正方形”的邊長為a,求a的取值范圍.
【考點】一次函數(shù)綜合題.
【答案】3;(3,5)或(7,5)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:29引用:2難度:0.5
相似題
-
1.如圖1,兩個正方形拼接成一個“L”型的圖形,現(xiàn)用一條直線將圖形分為面積相等的兩部分.小穎在研究時發(fā)現(xiàn)了三種不同的分割方法,圖2是其中一種方法.
(1)請在下面圖形(圖5)中再畫出另外兩種分割方法;
(2)若小正方形的邊長為2,大正方形的邊長為4.小穎在利用繪圖軟件研究分割方法時,將圖1放置在平面直角坐標(biāo)系中,如圖3所示,此時圖2所示的分割直線AB的表達式為y=-x+13.小穎發(fā)現(xiàn):上述三種不同的分割直線都經(jīng)過同一個點.請你證明此發(fā)現(xiàn);43
(3)小穎繼續(xù)研究,又發(fā)現(xiàn)了一種分割方法,如圖4所示.請根據(jù)此圖,簡述其作圖思路;
(4)通過上述探究過程,談?wù)勀愕氖斋@.(兩條即可)發(fā)布:2025/5/21 13:30:2組卷:144引用:2難度:0.3 -
2.如圖,在梯形ABCD中,AD∥BC,AB=CD,以邊BC所在直線為x軸,邊BC的中點O為原點建立直角坐標(biāo)平面,已知點B的坐標(biāo)為(-4,0),直線AB的解析式為y=2x+m.
(1)求m的值;
(2)求直線CD的解析式;
(3)若點A在第二象限,是否存在梯形ABCD,它的面積為30?若存在,請求出點A的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/1/21 8:0:1組卷:5引用:0難度:0.3 -
3.在平面直角坐標(biāo)系xOy中,直線y=kx(k≠0)在x軸及其上方的部分記為射線l.對于定點A(2
,0)和直線y=kx(k≠0),給出如下定義:同時將射線AO和直線y=kx分別繞點A和原點O順時針旋轉(zhuǎn)α(0°<α<180°)得到l1和l2,l1與l2的交點為點P,我們稱點P為射線l的“k-α”雙旋點.如圖,點P為y=2x的“2-30°”雙旋點.3
(1)若k=-3
①在給定的平面直角坐標(biāo)系xOy中,畫出“k-90°”的雙旋點P1;
②直接寫出α=30°的雙旋點P2的坐標(biāo) ;
③點P1(1,1)、P2(,3)、P3(0,2)是y=kx的“3”雙旋點的是 ;-3-α
(2)直線y=-2x+4分別交x軸、y軸于點M、N,若存在α,使直線y=kx的“k-α”雙旋點在線段MN上,求k的取值范圍;
(3)當(dāng)時,對于任意的α,若存在某個三角形上的所有點都是射線y=kx的“k-α”雙旋點,直接寫出這個三角形面積的最大值.-3≤k≤-32發(fā)布:2025/5/21 13:0:1組卷:409引用:1難度:0.3