試卷征集
加入會(huì)員
操作視頻

閱讀理解:
【問題情境】
教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?
【探索新知】
從面積的角度思考,不難發(fā)現(xiàn):
大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積
從而得數(shù)學(xué)等式:
(a+b)2=c2+4×
1
2
ab
(a+b)2=c2+4×
1
2
ab
;(用含字母a、b、c的式子表示)
化簡(jiǎn)證得勾股定理:a2+b2=c2
【初步運(yùn)用】
(1)如圖1,若b=2a,則小正方形面積:大正方形面積=
5:9
5:9
;
(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a=4,b=6此時(shí)空白部分的面積為
28
28

【遷移運(yùn)用】
如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問,小麗拼出圖3的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.
知識(shí)補(bǔ)充:如圖4,含60°的直角三角形,對(duì)邊y:斜邊x=定值k.

【考點(diǎn)】勾股定理的證明
【答案】(a+b)2=c2+4×
1
2
ab;5:9;28
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/17 3:0:8組卷:1814引用:10難度:0.4
相似題
  • 1.在學(xué)習(xí)勾股定理的過程中,我們已經(jīng)學(xué)會(huì)了運(yùn)用如圖圖形,驗(yàn)證著名的勾股定理,這種根據(jù)圖形直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,簡(jiǎn)稱為“無字證明”.實(shí)際上它也可用于驗(yàn)證數(shù)與代數(shù)、圖形與幾何等領(lǐng)域中的許多數(shù)學(xué)公式和規(guī)律,它體現(xiàn)的數(shù)學(xué)思想是( ?。?br />

    發(fā)布:2025/6/9 0:30:2組卷:46引用:2難度:0.6
  • 2.在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo),它是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的大正方形(如圖所示),若大正方形的面積為13,小正方形的面積是1,較長(zhǎng)的直角邊為a,較短的直角邊為b,則(a+b)2的值為(  )

    發(fā)布:2025/6/9 3:30:1組卷:265引用:2難度:0.5
  • 3.如圖,由四個(gè)直角邊分別為8和6的全等直角三角形拼成“趙爽弦圖”,其中陰影部分面積為
     

    發(fā)布:2025/6/9 0:0:2組卷:788引用:11難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正