試卷征集
加入會(huì)員
操作視頻

配方法是數(shù)學(xué)中重要的一種思想方法.它是指將一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法.這種方法常被用到代數(shù)式的變形中,并結(jié)合非負(fù)數(shù)的意義來(lái)解決一些問(wèn)題.我們定義:一個(gè)整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”.例如,5是“完美數(shù)”.理由:因?yàn)?=22+12,所以5是“完美數(shù)”.
(1)解決問(wèn)題:已知29是“完美數(shù)”,請(qǐng)將它寫成a2+b2(a、b是整數(shù))的形式;
(2)若x2-6x+5可配方成(x-m)2+n(m、n為常數(shù)),求mn的值.
(3)探究問(wèn)題:已知x2+y2-2x+4y+5=0,求x+y的值.

【答案】(1)29=22+52;
(2)-12;
(3)-1.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:150引用:3難度:0.6
相似題
  • 1.比較x2+1與2x的大小.
    (1)嘗試(用“<”“=”或“>”填空):
    ①當(dāng)x=1時(shí),x2+1
    2x;
    ②當(dāng)x=0時(shí),x2+1
    2x;
    ③當(dāng)x=-2時(shí),x2+1
    2x.
    (2)歸納:若x取任意實(shí)數(shù),x2+1與2x有怎樣的大小關(guān)系?試說(shuō)明理由.

    發(fā)布:2025/6/9 21:0:1組卷:1033引用:20難度:0.6
  • 2.已知多項(xiàng)式M=2x2-3x-2.多項(xiàng)式N=x2-ax+3.
    ①若M=0,則代數(shù)式
    13
    x
    x
    2
    -
    3
    x
    -
    1
    的值為
    26
    3
    ;
    ②當(dāng)a=-3,x≥4時(shí),代數(shù)式M-N的最小值為-14;
    ③當(dāng)a=0時(shí),若M?N=0,則關(guān)于x的方程有兩個(gè)實(shí)數(shù)根;
    ④當(dāng)a=3時(shí),若|M-2N+2|+|M-2N+15|=13,則x的取值范圍是-
    7
    3
    <x<2.
    以上結(jié)論正確的個(gè)數(shù)是( ?。?/h2>

    發(fā)布:2025/6/9 18:0:2組卷:669引用:5難度:0.4
  • 3.閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):當(dāng)a>0,b>0時(shí),∵
    a
    -
    b
    2
    =
    a
    -
    2
    ab
    +
    b
    0
    ,∴
    a
    +
    b
    2
    ab
    ,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),例如:當(dāng)a>0時(shí),求
    a
    +
    4
    a
    的最小值.解∵a>0,∴
    a
    +
    4
    a
    2
    a
    ?
    4
    a
    又∵
    2
    a
    ?
    4
    a
    =
    4
    ,∴
    a
    +
    4
    a
    4
    ,即a=2時(shí)取等號(hào).∴
    a
    +
    4
    a
    的最小值為4.請(qǐng)利用上述結(jié)論解決以下問(wèn)題:
    (1)當(dāng)x>0時(shí),當(dāng)且僅當(dāng)x=
    時(shí),
    x
    +
    1
    x
    有最小值2.
    (2)當(dāng)m>0時(shí),求
    m
    2
    +
    5
    m
    +
    12
    m
    的最小值.

    發(fā)布:2025/6/10 0:30:1組卷:134引用:2難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正